when liquid water changes into solid ice, it increases in mass
Answer:
The final temperature of water is 54.5 °C.
Explanation:
Given data:
Energy transferred = 65 Kj
Mass of water = 450 g
Initial temperature = T1 = 20 °C
Final temperature= T2 = ?
Solution:
First of all we will convert the heat in Kj to joule.
1 Kj = 1000 j
65× 1000 = 65000 j
specific heat of water is 4.186 J /g. °C
Formula:
q = m × c × ΔT
ΔT = T2 - T1
Now we will put the values in Formula.
65000 j = 450 g × 4.186 J /g. °C × (T2 - 20°C )
65000 j = 1883.7 j /°C × (T2 - 20°C )
65000 j/ 1883.7 j /°C = T2 - 20°C
34.51 °C = T2 - 20°C
34.51 °C + 20 °C = T2
T2 = 54.5 °C
Answer:
If the ambient temperature around a piece of ice increases, the temperature of the ice will increase as well. However, this steady increase in temperature stops as soon as the ice reaches its melting point. At this point, the ice undergoes a change of state and turns into liquid water, and its temperature won't change until all of it has melted. You can test this with a simple experiment. Leave a cup of ice cubes in a hot car and monitor the temperature with a thermometer. You'll find that the icy water remains at a frosty 32 degrees Fahrenheit (0 degrees Celsius) until all of it has melted. When that happens, you'll notice a quick temperature rise as the water continues to absorb heat from the inside of the car.
Answer:
27.98g/mol
Explanation:
Using ideal gas law equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
T = temperature (K)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
According to the information given:
V = 2.5L
P = 1.4 atm
T = 282K
n = ?
Using PV = nRT
n = PV/RT
n = 1.4 × 2.5/0.0821 × 282
n = 3.5/23.1522
n = 0.151mol
Using the formula to calculate molar mass of the elemental gas:
mole = mass/molar mass
Molar mass = mass/mole
Molar mass = 4.23g ÷ 0.151mol
Molar mass = 27.98g/mol