To solve this we use the equation,
M1V1 = M2V2
where M1 is the concentration of the stock
solution, V1 is the volume of the stock solution, M2 is the concentration of
the new solution and V2 is its volume.
65 x V1 = 2 x 200 L
V1 = 6.15 L
Answer:
300.9mL
Explanation:
Given parameters:
V₁ = 280mL
T₁ = 22°C
T₂ = 44°C
Unknown:
V₂ = ?
Solution:
To solve this problem, we apply Charles's law;
it is mathematically expressed as;

We need to convert the temperature to kelvin;
T₁ = 22°C = 22 + 273 = 295K
T₂ = 44°C = 44 + 273 = 317K
Input the parameters and solve;
= 
V₂ x 295 = 280 x 317
V₂ = 300.9mL
Answer:A
Explanation:
The melting points of solids depend in the relative sizes of ions in the ionic lattice. The smaller the relative sizes of the ions, the higher the lattice energy and the stronger the lattice hence higher melting point. Comparing relative ionic sizes, fluoride ion is lesser in size than chloride ion hence NaF has a higher melting point than NaCl.
Answer:
yeah its newton's third law
Explanation:
Well, all of this we owe it to Bohr who analyzed the atomic emission spectrum of hydrogen and he could probe matematically that it was a result of movement of e- from an especific energy level to a lower one. The understanding of levels of energy took to the development of the atomic theory