Answer: The data are consistent with the law of conservation of mass because the mass of reactants equals the mass of products
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Given: mass of sodium = 12.8 g
mass of chlorine = 19.6 g
mass of reactants = mass of sodium + mass of chlorine = 12.8 g + 19.6 g = 32.4 g
Mass of product = Mass of sodium chloride = 32.4 g
As mass of reactant = mass of products
, Thus results are in accordance with the law of conservation of mass.
Answer:
Follows are the solution:
Explanation:
A + B = C
Its response decreases over time as well as consumption of a reactants.
r = -kAB
during response A convert into 2x while B convert into x to form 3x of C
let's y = C
y = 3x
Still not converted sum of reaction
for A: 100 - 2x
for B: 50 - x
Shift of x over time

Integration of x as regards t
![\frac{1}{[(100 - 2x)(50 - x)]} dx = -k dt\\\\\frac{1}{2[(50 - x)(50 - x)]} dx = -k dt\\\\\ integral\ \frac{1}{2[(50 - x)^2]} dx =\ integral [-k ] \ dt\\\\\frac{-1}{[100-2x]} = -kt + D \\\\](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5B%28100%20-%202x%29%2850%20-%20x%29%5D%7D%20dx%20%3D%20-k%20dt%5C%5C%5C%5C%5Cfrac%7B1%7D%7B2%5B%2850%20-%20x%29%2850%20-%20x%29%5D%7D%20dx%20%3D%20-k%20dt%5C%5C%5C%5C%5C%20integral%5C%20%20%5Cfrac%7B1%7D%7B2%5B%2850%20-%20x%29%5E2%5D%7D%20dx%20%3D%5C%20integral%20%5B-k%20%5D%20%5C%20dt%5C%5C%5C%5C%5Cfrac%7B-1%7D%7B%5B100-2x%5D%7D%20%3D%20-kt%20%2B%20D%20%5C%5C%5C%5C)
D is the constant of integration
initial conditions: t = 0, x = 0
![\frac{-1}{[100-2x]} = -kt + D \\\\\frac{ -1}{[100]} = 0 + D\\\\D= \frac{-1}{100}\\\\](https://tex.z-dn.net/?f=%5Cfrac%7B-1%7D%7B%5B100-2x%5D%7D%20%3D%20-kt%20%2B%20D%20%20%20%5C%5C%5C%5C%5Cfrac%7B%20-1%7D%7B%5B100%5D%7D%20%3D%200%20%2B%20D%5C%5C%5C%5CD%3D%20%5Cfrac%7B-1%7D%7B100%7D%5C%5C%5C%5C)
hence we get:
![\frac{-1}{[100-2x]}= -kt -\frac{1}{100}\\\\or \\\\ \frac{1}{(100-2x)} = kt + \frac{1}{100}](https://tex.z-dn.net/?f=%5Cfrac%7B-1%7D%7B%5B100-2x%5D%7D%3D%20-kt%20-%5Cfrac%7B1%7D%7B100%7D%5C%5C%5C%5Cor%20%5C%5C%5C%5C%20%5Cfrac%7B1%7D%7B%28100-2x%29%7D%20%3D%20kt%20%2B%20%5Cfrac%7B1%7D%7B100%7D)
after t = 7 minutes , 

Insert the above value x into
equation
to get k.


therefore plugging in the equation the above value of k

Let y = C
, calculate C:
y = 3x

amount of C formed in 28 mins
plug t = 28

therefore amount of C formed in 28 minutes is = 3x = 144.78 grams
C: 
y= 136.5 =137
Answer: 7s
Explanation:
The order of the reaction is 2.
Integrated rate law for second order kinetic is determined using the formula
1/[At]=1/[Ao] +kt
But, [Ao] is the initial concentration = 1.50 mol/L
And [At] is the final concentration = 1/3 of initial concentration =1/3×1.5 = 0.5 mol/L
Rate constant, k = 0.2 L/mol*s
Using the formula
1/0.5=1/1.5+0.2t
Collecting like terms
1/0.5-1/1.5=0.2t
LCM = 1.5
3-1/1.5=0.2t
2/1.5=0.2t
Multiply both sides by 1/0.2
2/1.5×0.2=t
2/0.3=t
t=6.66s
t=7s
Answer:
They want to escape from the fury of a hurricane.
Explanation:
Your welcomeeeeeeeeeeeee
Answer:
Options a,b, c and d are correct
Explanation:
From the diagram attached in the picture below, They both have steroid nucleus since they have functional groups (such as the methyl and the ketone groups) that are spatially attached. It can also be deduced that both structures have three (3) ketone groups (CO/C=O), two (2) methyl groups (CH₃) and two (2) hydroxyl groups (OH). Hence, options a, b,c and d are correct.
However, cortisone has one (1) double bond while prednisone has two (2) double bonds.