Answer:
26.0 g/mol is the molar mass of the gas
Explanation:
We have to combine density data with the Ideal Gases Law equation to solve this:
P . V = n . R .T
Let's convert the pressure mmHg to atm by a rule of three:
760 mmHg ____ 1 atm
752 mmHg ____ (752 . 1)/760 = 0.989 atm
In density we know that 1 L, occupies 1.053 grams of gas, but we don't know the moles.
Moles = Mass / molar mass.
We can replace density data as this in the equation:
0.989 atm . 1L = (1.053 g / x ) . 0.082 L.atm/mol.K . 298K
(0.989 atm . 1L) / (0.082 L.atm/mol.K . 298K) = 1.053 g / x
0.0405 mol = 1.053 g / x
x = 1.053 g / 0.0405 mol = 26 g/mol
Answer:
<h2>12.38 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

m is the mass
v is the volume
From the question
m = 149.8 g
v = 12.1 mL
We have

We have the final answer as
<h3>12.38 g/mL</h3>
Hope this helps you
Answer:Chromatography technique that uses paper sheets or strips as the adsorbent being the stationary phase through which a solution is made to pass is called paper chromatography. It is an inexpensive method of separating dissolved chemical substances by their different migration rates across the sheets of paper.
You're welcome :)
Answer:
72.6 grams
Explanation:
I got this answer through stoichiometry. For every 1 mole of Mg, 2 moles of CuBr are consumed. Because of this, multiply the moles of Mg by 2. Then, convert moles to grams.
Answer:

Explanation:
(a) Balanced equation
Cu + 2AgNO₃ ⟶ Cu(NO₃)₂+ 2Ag
(b) Calculation
You want to convert atoms of Cu to atoms of Ag.
The atomic ratio is ratio is 2 atoms Ag:1 atom Cu
