To calculate number of moles, all you do is divide the given mass by the molecular molar mass:
<span>i.e. 125g / 18g = 6.94444g </span>
<span>Therefore, your answer is (a) 6.94 g</span>
The first one is D, the second one is A and the last is C and D
Velocity and mass are directly proportional to the quantity of momentum by:
p = mv. Therefore, and increase in either velocity or mass will lead to an increase in momentum and vice versa. Momentum during a reaction is always conserved, meaning that the mass and initial velocity before a reaction will always be equal to the change in mass and velocity produced after the reaction. Kinetic energy after a reaction, however, is not always conserved. For example if a fast moving vehicle collided with a stationary vehicle, and moved together, the overall kinetic energy would be after the reaction, as a heaver mass would be moved by the same velocity causing a decrease in kinetic energy.
I don't know if this is exactly what you are looking for, but in physics this is how it is understood.
Calcium fluoride.
Ca is metal, F is non-metal, so they form ionic bond.
Ca as metal can form only positive ion. Ca in the second group, so the charge of Ca ion is 2+. Ca²⁺
F is in the 17th group, so it has 7 electrons on the last level. It is non-metal, non-metal, so it has negative charge -(8-7)=-1. "8" because on the last level cannot be more than 8 electrons. F-ion is F¹⁻.
Ca²⁺ F¹⁻
Number of positive charges should be equal to number of negative charges,
Formula of calcium fluoride
CaF2.
2 atoms Fluorine bond with Calcium.
I think the answer would be Ga3+