Answer:
Check the explanation
Explanation:
A) 7th Harmonic. (Of an open ended pipe, odd harmonics are allowed (3rd overtone))
b) f = n v / 4 L
n = 7
f = 7 x 350 / 4 x 0.41 = 1493.9 Hz
c) Let level of water H, If reduces the effective length of pipe
Using, f = n v / 4 Leff
n = 1
251.8 = 1 x 350 / 4 ( 0.41 - H)
H = 0.0625m
H = 6.25 cm
a)
We use the formula :
m1v1i + m2v2i = m1v1f + m2v2f
Substituting the values in:
4.0kg*8.0m/s + 4.0kg*0m/s = 4.0kg*0m/s +4.0kg*v2f
Calculating this we get:
32.0kg*m/s + 0kg*m/s = 0kg*m/s + 4.0kg*v2f
Rearrange for v2f:
v2f = 
This gives us 8.0 m/s as the final velocity of the second ball.
b)
Since the collision is assumed to be elastic it means that the kinetic energy must be equal before and after the collision.
This means we use the formula:
Ek =
+
=
+ 
Substituting in values:
Ek = 0.5*4.0kg*(8.0m/s)^2 + 0.5*4.0kg*(0m/s)^2 = 0.5*4.0kg*(0m/s)^2 + 0.5*4.0kg*(8.0m/s)^2
This simplifies to:
Ek= 128J + 0J = 0J + 128J
This shows us that the kinetic energy is equal on each side therefore the collision is Elastic and no energy has been lost.