1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
azamat
3 years ago
14

A square wave has amplitude 0 V for the low voltage and 4 V for the high voltage. Calculate the average voltage by integrating o

ver one period of the waveform. Hint: the equation for a square wave will be a piecewise function and it will be convenient to start the integration where the voltage changes; for example in this problem we could define that during the first half of the period the voltage is 0 V and for the second half of the period the voltage is 4 V
Physics
1 answer:
Margarita [4]3 years ago
6 0

Answer:

V_{average} = \frac{1}{2}  V_o  ,     V_{average} = 2 V

Explanation:

he average or effective voltage of a wave is the value of the wave in a period

            V_average = ∫ V dt

in this case the given volage is a square wave that can be described by the function

           V (t) = \left \{ {{V=V_o \ \ \  t<  \tau /2} \atop {V=0 \ \  \ \  t> \tau /2 }   } \right.

to substitute in the equation let us separate the into two pairs

             V_average = \int\limits^{1/2}_0 {V_o} \, dt + \int\limits^1_{1/2} {0} \, dt

             V_average = V_o \ \int\limits^{1/2}_0 {} \, dt

             V_{average} = \frac{1}{2}  V_o

we evaluate  V₀ = 4 V

             V_{average} = 4 / 2)

             V_{average} = 2 V

You might be interested in
There is a refrigerator running in a room, the heat flowing into the refrigerator from the outside is 40 J/s, and the refrigerat
Mamont248 [21]

Answer:

(A) 140 j/sec (b) 1.26 K

Explanation:

We have given the heat heat flowing into the refrigerator = 40 J/sec

Work done = 40 W

(a) So the heat discharged from the refrigerator =heat\ flowing\ in\ refrigerator+work\ done=40+100=140j/sec

(b) Total heat absorbed =140 j/sec =140\times 3600=504000j/hour

Let the temperature be \Delta T

Heat absorbed per hour =504000 [tex]=400\times 10^3\times \Delta T

So  \Delta T=\frac{504000}{400000}=1.26K

8 0
3 years ago
Imagine a system where a block rests on an inclined plane. The block is then given an initial push so that it starts sliding dow
Helen [10]

Answer:

statement - 'The work done by friction is equal to the sum of the work done by the gravity and the initial push' is correct.

Explanation:

The statement ''The work done by friction is equal to the sum of the work done by the gravity and the initial push" is correct.

The above statement is correct because, the initial push will tend to slide down the block thus the work done by the initial push will be in the downward direction. Also, the gravity always acts in the downward direction. thus, the work done done by the gravity will also be in the downward direction

here, the downward direction signifies the downward motion parallel to the inclined plane.

Now we know that the work done by the friction is against the direction of motion. Thus, the friction force will tend to move the block up parallel to the inclined plane.

Hence, for the block to stop sliding the the above statement should be true.

6 0
3 years ago
An electron moving in a direction perpendicular to a uniform magnetic field at a speed of 1.6 107 m/s undergoes an acceleration
umka2103 [35]

Answer:

B = 0.024T positive z-direction

Explanation:

In this case you consider that the direction of the motion of the electron, and the direction of the magnetic field are perpendicular.

The magnitude of the magnetic force exerted on the electron is given by the following formula:

F=qvB     (1)

q: charge of the electron = 1.6*10^-19 C

v: speed of the electron = 1.6*10^7 m/s

B: magnitude of the magnetic field = ?

By the Newton second law you also have that the magnetic force is equal to:

F=qvB=ma       (2)

m: mass of the electron = 9.1*10^-31 kg

a: acceleration of the electron = 7.0*10^16 m/s^2

You solve for B from the equation (2):

B=\frac{ma}{qv}\\\\B=\frac{(9.1*10^{-31}kg)(7.0*10^{16}m/s^2)}{(1.6*10^{-19}C)(1.6*10^7m/s)}\\\\B=0.024T

The direction of the magnetic field is found by using the right hand rule.

The electron moves upward (+^j). To obtain a magnetic forces points to the positive x-direction (+^i), the direction of the magnetic field has to be to the positive z-direction (^k). In fact, you have:

-^j X ^i = ^k

Where the minus sign of the ^j is because of the negative charge of the electron.

Then, the magnitude of the magnetic field is 0.024T and its direction is in the positive z-direction

8 0
3 years ago
a car with a mass of 2000 kilograms is moving around a circular curve at a uniform velocity of 25 meters per second. The curve h
melisa1 [442]
In the given problem, we say various information's that are going to help us reach the ultimate answer to the question. Let us first write the information's that have been presented in front of us.
Mass of the car = 2000 kg
Velocity of the car = 25 m/s^2
Radius of the circle = 80 m
Now we already know the equation for calculating the centripetal force and that is
Centripetal Force = [mass * (velocity)^2]/Radius
                            = [2000 * (25)^2]/80
                            = (2000 * 625)/80
                            = 1250000/80
                            = 15625
So the centripetal force on the car is 15625 Newtons
  
4 0
3 years ago
Read 2 more answers
You wiggle a string,that is fixed to a wall at the other end, creating a sinusoidalwave with a frequency of 2.00 Hz and an ampli
FinnZ [79.3K]

Answer:

Explanation:

A general wave function is given by:

f(x,t)=Acos(kx-\omega t)

A: amplitude of the wave = 0.075m

k: wave number

w: angular frequency

a) You use the following expressions for the calculation of k, w, T and λ:

\omega = 2\pi f=2\pi (2.00Hz)=12.56\frac{rad}{s}

k=\frac{\omega}{v}=\frac{12.56\frac{rad}{s}}{12.0\frac{m}{s}}=1.047\ m^{-1}

T=\frac{1}{f}=\frac{1}{2.00Hz}=0.5s\\\\\lambda=\frac{2\pi}{k}=\frac{2\pi}{1.047m^{-1}}=6m

b) Hence, the wave function is:

f(x,t)=0.075m\ cos((1.047m^{-1})x-(12.56\frac{rad}{s})t)

c) for x=3m you have:

f(3,t)=0.075cos(1.047*3-12.56t)

d) the speed of the medium:

\frac{df}{dt}=\omega Acos(kx-\omega t)\\\\\frac{df}{dt}=(12.56)(1.047)cos(1.047x-12.56t)

you can see the velocity of the medium for example for x = 0:

v=\frac{df}{dt}=13.15cos(12.56t)

7 0
3 years ago
Other questions:
  • A proton, mass 1.67 × 10−27 kg and charge +1.6 × 10−19 c, moves in a circular orbit perpendicular to a uniform magnetic field of
    11·1 answer
  • What do microwaves have in common with light waves?
    10·2 answers
  • A skateboarder is standing at the top of a tall ramp waiting to begin a trip. The skateboarder has
    14·2 answers
  • As a student is performing a double slit experiment to determine the wavelength of a light source, she realizes that the nodal l
    7·1 answer
  • Which of the following is an example of rotation
    5·1 answer
  • Whats the standard unit for measuring mass
    8·2 answers
  • Length of table is 1.0 metre, 1.00 metre and 1.000 metre. Which one is more accurate?​
    15·1 answer
  • PLEASE HELP!!! WILL GIVE 30 POINTS!! HAS TO BE CORRECT!
    13·2 answers
  • A rocket is fired at a 45° angle, what is the direction of the horizontal velocity vector at the peak height?
    13·1 answer
  • Which has more inertia - a 2,750 gram object or a 2,500 gram object?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!