The solution set of the inequality x ≥ - 4 using set builder notation and interval notation is {x | x ∈ Z, - 4 ≤ x ≤ ∞ } and [ - 4, ∞ ) respectively.
An inequality in mathematics is a relation that compares two numbers or other mathematical expressions in an unequal way.
A set can be represented by its elements or the properties that each of its members must meet can be described using set-builder notation.
Interval Notation: A set of real numbers known as an interval contains all real numbers that fall inside any two of the set's numbers.
Consider the inequality,
x ≥ - 4
In the number line, the value of x is equal to and greater than - 4 increasing to infinity.
Therefore,
The solution set using the set builder notation is:
{x | x ∈ Z, - 4 ≤ x ≤ ∞ }
The solution set of the inequality using the interval notation is:
[ - 4, ∞ )
Learn more about set builder notation here:
brainly.com/question/13420868
#SPJ1
Answer:
When the pans contain exactly the same mass the beam is in balance. ... You can place an object in one pan and standard weights in the other to find what the object weighs. Here balance scales are used to show that the box "x" has a mass of 4
Answer:
answer is C. if im wrong just let me know :3