Answer:
1. the slop of a line perpendicular to that line is: 7/4.
2. the slope of a line parallel to that line is: - 4/7
Step-by-step explanation:
To get the perpendicular line you have to find the negative reciprocal of the slope of the original line. and lines with the same slope are parallel.
Answer:
The equation of the line that passes through (0, -2) and has a slope of 0 is 
Step-by-step explanation:
We need to find the equation of the line that passes through (0, -2) and has a slope of 0?
The equation of line can be expressed in slope-intercept form
where
- m is slope
- b is y-intercept
We need to find slope and y-intercept for the equation.
We are given slope = 0 so, m = 0
Now, y-intercept can be found using slope m=0 and point (0,-2)

So, we get y-intercept: b = -2
Now, the equation of the line having slope m=0 and y-intercept b=-2 is:

So, the equation of the line that passes through (0, -2) and has a slope of 0 is 
Answer:
<h2>A)t=6.7</h2>
Step-by-step explanation:
<h3>to understand this</h3><h3>you need to know about:</h3>
- quadratic equation
- quadratic equation word problems
- solving quadratic
<h3>given:</h3>
h(t) = -4t² + 12t + 100
<h3>to solve:</h3>
t
<h3>tips and formulas:</h3>
- <u>the</u><u> </u><u>Ball</u><u> </u><u>will</u><u> </u><u>hit </u><u>the</u><u> ground</u><u> </u><u>when</u><u> </u><u>the</u><u> height</u><u> is</u><u> </u><u>0</u>
- <u>solving</u><u> </u><u>quadratics </u><u>using</u><u> </u><u>quadratic</u><u> formula</u>
- <u>PEMDAS</u>
<h3>let's solve: </h3>














<h3>Given</h3>
A regular polygon with area 500 ft² and apothem 10 ft
Cost of fence is $7.95 per ft
<h3>Find</h3>
Part III The cost of fence around an area scaled to 60 times the size
<h3>Solution</h3>
You don't want to think too much about this, because if you do, you find the regular polygon has 3.087 sides. The closest approximation, an equilateral triangle, will have an area of 519.6 ft² for an apothem of 10 ft.
For similar shapes of scale factor "s", the larger shape will have an area of s² times that of the smaller one. Here, it appears the area scale factor s² is 60, so the linear scale factor is
... s² = 60
... s = √60 ≈ 7.7460
The perimeter fence of the 500 ft² area is presumed to be 100 ft long (twice the area of the polygon divided by the apothem—found in Part I), so the perimeter fence of the industrial farm is ...
... (100 ft)×7.7460 = 774.60 ft
and the cost to construct it is
... ($7.95/ft)×(774.60 ft) ≈ $6158
Answer:
https://socratic.org/questions/how-do-you-write-the-equation-of-the-quadratic-function-with-roots-6-and-10-and-
Step-by-step explanation: