Answer:
After population (A) = 62,902 (Approx)
Step-by-step explanation:
Given:
Current population (P) = 19613
Number of years (n) = 2020 - 2000 = 20 year
Rate of growth (r) = 6% = 0.06
Find:
After population (A)
Computation:
![After\ population (A) = Current\ population (P)[1+r]^n \\\\After\ population (A) = 19613[1+0.06]^{20} \\\\After\ population (A) = 19613[1.06]^{20} \\\\After\ population (A) = 62,901.548](https://tex.z-dn.net/?f=After%5C%20population%20%28A%29%20%3D%20Current%5C%20population%20%28P%29%5B1%2Br%5D%5En%20%5C%5C%5C%5CAfter%5C%20population%20%28A%29%20%3D%2019613%5B1%2B0.06%5D%5E%7B20%7D%20%5C%5C%5C%5CAfter%5C%20population%20%28A%29%20%3D%2019613%5B1.06%5D%5E%7B20%7D%20%5C%5C%5C%5CAfter%5C%20population%20%28A%29%20%3D%2062%2C901.548)
Given:
The number is 3091.
To find:
The number of hundreds blocks if there are no thousands block.
Solution:
The given number is 3091.
It can be written as:



There are no thousands block. So,


Therefore, the number of hundreds blocks in 3091 is 30.
Answer:B
Step-by-step explanation:
-2x+5>9
-2x>4
-x>2
x<-2
Answer:
-7
Step-by-step explanation:
You divide -3 on both sides to get the variable by itself, so -3 divided by 21 is -7