1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRINA_888 [86]
2 years ago
13

The diagram below shows a three dimensional view of the pool.

Mathematics
1 answer:
shutvik [7]2 years ago
5 0

Answer:

a) A_{f} = 408.54\,m^{2}, b) A_{w} = 106.2\,m^{2}

Step-by-step explanation:

a) The floor area of the pool is:

A_{f} = (10\,m)\cdot (12\,m)+(18\,m)\cdot (16.03\,m)

A_{f} = 408.54\,m^{2}

b) The total area of the walls of the pool is:

A_{w} = 2\cdot (0.9\,m)\cdot (16\,m) + (0.9\,m)\cdot (16\,m) + (18\,m)\cdot (1.8\,m)+ 2\cdot (12\,cm)\cdot (0.9\,m)+(10\,m)\cdot (0.9\,m)

A_{w} = 106.2\,m^{2}

You might be interested in
A triangle has sides with lengths of 7 millimeters, 14 millimeters, and 15 millimeters. Is it a right triangle
Harman [31]

Answer:

Step-by-step explanation:

Property of a right triangle,

(Hypotenuse)² = (leg 1)² + (leg 2)²

If the length of sides of the given triangle are 7mm, 14mm and 15mm.

(15)² = (7)² + (14)²

225 = 49 + 196

225 = 245

False

Therefore, the given triangle is not a right triangle.

6 0
2 years ago
Read 2/3 pages in an hour how long would it take to read 20 pages
alisha [4.7K]
It would take about 63 hours...
6 0
3 years ago
[IMAGE ATTACHED]<br> I don’t understand this please help.
rusak2 [61]

Answer:

  • z+5+101=180°( being straight angle)
  • z=180°-106°
  • z=74°

<h3>hope it helps.</h3><h3>stay safe healthy and happy</h3><h3 />
5 0
3 years ago
An artificial lake is in the shape of a rectangle and has an area of 9/20 square mile the width of the lake is 1/5 the length of
DIA [1.3K]
Answer:  The dimensions are:   " 1.5 mi.  ×  ³⁄₁₀  mi. " .
_______________________________________________
             { length = 1.5 mi. ;  width =  ³⁄₁₀  mi. } .
________________________________________________
Explanation:
___________________________________________
Area of a rectangle:

A = L * w ; 

in which:  A = Area = (9/20) mi.² ,
                L = Length = ?
                w = width = (1/5)*L = (L/5) = ?
________________________________________
  A = L * w ;  we want to find the dimensions; that is, the values for
                         "Length (L)"  and "width (w)" ; 
_______________________________________
Plug in our given values:
_______________________________________
 (9/20) mi.² = L * (L/5) ;  in which: "w = L/5" ; 
 
     → (9/20) = (L/1) * (L/5) = (L*L)/(1*5) = L² / 5 ;
   
          ↔  L² / 5  = 9/20 ;
 
            →  (L² * ? / 5 * ?) = 9/20 ?    

                →     20÷5 = 4 ;  so; L² *4 = 9 ;
 
                   ↔    4 L² = 9 ; 
 
                   →  Divide EACH side of the equation by "4" ;
           
                   →   (4 L²) / 4 = 9/4 ;
______________________________________
           to get:  →  L² = 9/4 ; 
 Take the POSITIVE square root of each side of the equation; to isolate "L" on one side of the equation; and to solve for "L" ;
___________________________________________          
 
     →   ⁺√(L²)   =   ⁺√(9/4) ;

    →   L  =  (√9) / (√4) ; 

    →  L = 3/2 ; 

    → w = L/5 = (3/2) ÷ 5 = 3/2 ÷ (5/1) = (3/2) * (1/5) = (3*1)/(2*5) = 3/10;
________________________________________________________
Let us check our answers:
_______________________________________
(3/2 mi.) * (3/10 mi.) =? (9/20) mi.² ??

→ (3/2)mi. * (3/10)mi.  =  (3*3)/(2*10) mi.² = 9/20 mi.² ! Yes!
______________________________________________________
So the dimensions are: 

Length = (3/2) mi. ;  write as: 1.5 mi.

width = ³⁄₁₀ mi.
___________________________________________________
or; write as:  " 1.5 mi.  ×  ³⁄₁₀ mi. " .
___________________________________________________
7 0
3 years ago
Slope formula question (Algebra 2)
DaniilM [7]
\bf \begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%   (a,b)&#10;&({{ 5}}\quad ,&{{ 3}})\quad &#10;%   (c,d)&#10;&({{ 3}}\quad ,&{{ 1}})&#10;\end{array}&#10;\\\\\\&#10;% slope  = m&#10;slope = {{ m}}= \cfrac{rise}{run} \implies &#10;\cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{1-3}{3-5}\implies \cfrac{-2}{-2}\implies 1
7 0
3 years ago
Other questions:
  • Simplify (5 + 5)squared - 17-3
    12·1 answer
  • I need help with the first one
    10·1 answer
  • The vertices of a right triangle are (–6, 4), (0, 0), and (x, 4).
    13·1 answer
  • What are two ratios equivalent to 3:7
    10·2 answers
  • What is the interquartile range of the data set? <br><br> {33, 38, 45, 56, 57, 63, 72, 91}
    10·1 answer
  • What is law of sines
    5·1 answer
  • Pls help on number 6!!
    11·1 answer
  • 8/9i+12=2/9i+34 (solve for a)
    15·1 answer
  • Which unit of measure would be appropriate for the volume of a spher with a radius of 2 meters
    15·1 answer
  • An object has a mass of 560 kg and a volume of 8 m3. find the density of the object in kg/m3.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!