Answer is: <span>B) inner core.
</span>The Sun interior is divided into three regions: the inner core<span>, the </span>radiative zone<span> and the </span><span>convection zone.
</span><span>The inner core is the central region of the Sun and all solar energy is produced in the core by nuclear fusion.
</span>Radiative zone is a<span>round the inner core and in this area</span><span> energy is transported by </span>radiation.
The convection zone is the outer-most layer of the interior and in this area energy is transported by convection.
Answer:
water, when the metastable state is reached, is cooled below the zero temperature. It freezes abruptly. this is called metastable. They are not at equilibrium per se; as at negative temperatures the only equilibrium state of water is ice.
Explanation:
Answer:
B
Explanation:
four electron in atom in cal
Answer:
(a) Three translational degrees of freedom, 2 rotational degrees. 5 total
Cv = 5/2 R; Cp = 7/2 R
(b) and (c) 6 total degrees of freedom ( 3 translational, 3 rotational)
Cv = 3 R ; Cp = 4R
Explanation:
(a) O₂
Oxygen being a diatomic molecule has three translational degrees of freedom and two rotational degrees of freedom since it can move in the three axis and can rotate around two.
(b) H₂O
This is a polyatomic molecule and it has three translational and three rotational degrees of freedom.
(c) Same as water it has three translational degrees of freedom and three rotational degrees of freedom
To calculate the heat capacities we have to make use of the equipartition theorem which tell us that for each degree of freedom imparts 1/2 R to the heat capacity at constant volume.
(a)
5 total degrees of freedom ⇒ Cv = 5/2 R
Cp ( heat capacity at constant pressure) is determined from the relation
Cp - Cv = R
Cp = 7/2 R for O2 molecule
(b) and (c)
Total degrees of freedom 6
Cv = 3 R
Cp = 4 R
Here we are ignoring any contribution of the vibrational modes to the contribution of the heat capacities