Answer:
(-2.4, 37.014)
Step-by-step explanation:
We are not told how to approach this problem.
One way would be to graph f(x) = x^5 − 10x^3 + 9x on [-3,3] and then to estimate the max and min of this function on this interval visually. A good graph done on a graphing calculator would be sufficient info for this estimation. My graph, on my TI83 calculator, shows that the relative minimum value of f(x) on this interval is between x=2 and x=3 and is approx. -37; the relative maximum value is between x= -3 and x = -2 and is approx. +37.
Thus, we choose Answer A as closest approx. values of the min and max points on [-3,3]. In Answer A, the max is at (-2.4, 37.014) and the min at (2.4, -37.014.
Optional: Another approach would be to use calculus: we'd differentiate f(x) = x^5 − 10x^3 + 9x, set the resulting derivative = to 0 and solve the resulting equation for x. There would be four x-values, which we'd call "critical values."
2
A whole pizza has 8 slices. 1/4=25%. 25% of 8 is 2.
Answer:
- (b) Her scale model drawing will not fit on a piece of paper that is 8.5 inches by 7 inches because the dimensions are not proportional to the scale.
Explanation:
(a) What is the length of the garden in her model? Show your work, including your proportion
<u>1. Scale</u>:
- model length / real length = 1 inch / 2 feet
<u>2. Proportion</u>:
Naming x the model length:
- 1 inch / 2 feet = x / 6 feet
Cross multiply:
- 1 inch × 6 feet = 2 feet × x
Divide both sides by x:
- x = 1 inch × 6 feet / 2 feet = 3 inch.
Answer: 3 inches
(b) If the width is 5 inches for the scale model and the scale is still 1 inch to 2 feet, will her scale model drawing fit on a piece of paper that is 8.5 inches by 7 inches? Why or why not?
Both the width and the length must use the same scale, thus the corresponding sides of the scale model and the drawing must be proportional.
In the model the ratio of the length to the width is 3 inch / 5 inch
In the paper the ratio of the length to the width is 8.5 inch / 7 inch
Hence, you can see that in the model the length (mumerator of the fraction) is less than the width (denominator) while in the paper it is the opposite. Bieng the two ratios different, they are not proportional, and you conclude that her scale model drawing will not fit on a piece of paper that is 8.5 inches by 7 inches.
The area of a sphere: A = 4.π.R²
A= 5541.77 → 5541.77 = 4.π.R²
R² = (5541.77)/(4.π)
R² = 441; → R =√441; R = 21 cm
B!!! Because they A equals -20, B equals 20, C equals 0, and D equals 0!