Answer:

Explanation:
As we know that


also we know that

it is given as


also we can find the magnitude of two vectors as


similarly we have


now we know the formula of dot product as




It depends when you look at a pichture it could possibly help.
Answer:
the spear will end up above the fish relative to the actual position of the fish.
Explanation:
due to refraction of light coming from the fish the fish will appear slightly above from its real position
So due to this refraction the spearfisher will throw the spear directly at the image of the fish due to which it will not reach the position of fish but it will reach the position above the fish.
So here we can say that the spear will end up above the fish relative to the actual position of the fish
Answer:
In two significant figure 360K
Explanation:
The temperature difference (ΔT) can be calculated as the boiling temperature minus the freezing temperature in Fahrenheit.
Hence,
ΔT = 212 - 32
ΔT = 180°F
To convert to °F to kelvin, we use the formula below
= (°F - 32) × 5/9 + 273.15
= (180°F - 32) × 5/9 + 273.15
= 355.37K ⇔ 360K
<u>Answer:</u>
<em>The initial distance between the trains is 1450 m.
</em>
<u>Explanation:</u>
In the question two trains are of equal length 400 m and moves at a uniform speed of 72 km/h. train A is moving ahead of train B. If the train B has to overtake train A it should accelerate.
Train B’s acceleration is
and it accelerated for 50 seconds.
<em>
</em>
<em>t=50 s
</em>
<em>initial speed u=72km/h
</em>
<em>we have to convert this speed into m/s </em>
<em>
</em>
<em>Distance covered in accelerating phase
</em>
<em>
</em>
<em>
</em>
If a train is just behind another, the distance covered by the train located behind during overtaking phase will be equal to the sum of the lengths of the trains.
<em>Here length of train A+length of train
</em>
<em>Hence the initial distance between the trains =
</em>