Magnets always point towards north or south. It has been proven that magnets of the same magnetic poles repel each other and those that have different magnetic poles attract each other. Therefore, for the case of N-S magnetic pole, they attract.
To solve this problem we must apply the concepts related to Tangential Acceleration based on angular velocity and acceleration, and therefore, we must also calculate angular velocity based on the given frequency. For all these problems we will take the Units to the International System. The maximum acceleration would then be defined as,

Here,
= Angular velocity
A = Amplitude
At the same time the angular velocity is described as,

Here f means the frequency of the wave. Substituting,




Replacing at the first equation,


Therefore the maximum particle acceleration for a point on the string is 
Answer:
The final velocity is 28.14 m/s
Yes the angle of projection matters
Explanation:
Given;
initial velocity of the water balloon, u = 20 m/s
height of the building, h = 20 m
let the final speed of the ball when it hits the ground = v
The final speed is calculated as follows;
v² = u² + 2gh
v² = (20)² + 2(9.8)(20)
v² = 400 + 392
v² = 792
v = √792
v = 28.14 m/s
Yes the angle matters, if the balloon had been dropped at a certain angle, the final velocity would have been estimated using the following formula;

where;
θ is the angle of projection, which accounts for the vertical component of the velocity.
Answer:
There are three types of material as per the condition of charge flow
1) Conductor
2) Insulator
3) Semiconductor
1) Conductors
As we know that conductors are those which offer very small resistance to the flow of charge
Resistivity of the conductors are very small
2) Insulators
These type of materials offer large resistance to the flow of charges and it will not pass the current through it
So resistivity of the insulators are large as compared to conductors