<h3>
Answer:</h3>
2.125 g
<h3>
Explanation:</h3>
We have;
- Mass of NaBr sample is 11.97 g
- % composition by mass of Na in the sample is 22.34%
We are required to determine the mass of 9.51 g of a NaBr sample.
- Based on the law of of constant composition, a given sample of a compound will always contain the sample percentage composition of a given element.
In this case,
- A sample of 11.97 g of NaBr contains 22.34% of Na by mass
A sample of 9.51 g of NaBr will also contain 22.345 of Na by mass
% composition of an element by mass = (Mass of element ÷ mass of the compound) × 100
Mass of the element = (% composition of an element × mass of the compound) ÷ 100
Therefore;
Mass of sodium = (22.34% × 9.51 g) ÷ 100
= 2.125 g
Thus, the mass of sodium in 9.51 g of NaBr is 2.125 g
False, the hydrogen atom does not form the basis for all life.
Answer:
The pressure in mmHg is 1253 (option C)
Explanation:
Two quantities are directly proportional if when multiplying or dividing one of them by a number, the other is multiplied or divided by that number. In other words, the magnitudes are directly proportional when one magnitude increases and so does the other in the same proportion; or when one magnitude decreases and so does the other in the same proportion.
The rule of three or is a way of solving proportionality problems between three known values and an unknown value, which can be applied to directly proportional quantities as follows:
a ⇒ b
c ⇒ x
So 
where a, b and c are data and x is the unknown value to be calculated.
In this case, knowing that 1 Torr = 1 mmHg, the rule of three can be applied as follows: if 1 torr is equal to 1 mmHg, 1253 torr is equal to how many mmHg?

pressure= 1253 mmHg
<u><em>The pressure in mmHg is 1253 (option C)</em></u>
2H2O+O2--->2H2O2
8.5 gm H2O2=0.25 mole
hence H2O is also 0.25 mole i.e.4.5 gm
O2is 0.125 mole i.e.4 gm