The balanced chemical reaction is given as:

Now, convert
into litres.

So, 
Density is equal to the ratio of mass to the volume.

where, M = mass and V= volume 
Substitute the value of density and volume in formula to get the value of mass.



Now, number of moles of
gas=
= 
According to the reaction, 2 moles of sodium azide gives 3 moles of nitrogen gas.
Now, in 24.00 moles of nitrogen gas produced from=
of nitrogen gas, moles of sodium azide.
number of moles of sodium azide = 
Mass of sodium azide in g =
.
= 
= 
Thus, mass of sodium azide which is required to produce
of nitrogen gas = 
At a particular temperature, the solubility of He in water is 0.080 M when the partial pressure is 1.7 atm. 4.25 atm is the partial pressure of He would give a solubility of 0.200 M.
<h3>What is Henry's Law ?</h3>
Henry's Law is a gas law states that at a constant temperature the amount of gas that dissolved in a liquid is directly proportional to the partial pressure of that gas.
<h3>What is relationship between Henry's Law constant and Solubility ?</h3>
The solubility of gas is directly proportional to partial pressure.
It is expressed as:

where,
= Solubility of gas
= Henry's Law constant
= Partial pressure of gas
Now put the values in above expression we get

0.080M =
× 1.7 atm

= 0.047 M/atm
Now we have to find the partial pressure of He

0.200 M = 0.047 M/atm × 

= 4.25 atm
Thus from the above conclusion we can say that At a particular temperature, the solubility of He in water is 0.080 M when the partial pressure is 1.7 atm. 4.25 atm is the partial pressure of He would give a solubility of 0.200 M.
Learn more about the Henry's Law here: brainly.com/question/23204201
#SPJ4
Answer:
Rank in increasing order of effective nuclear charge:
Explanation:
This explains the meaning of effective nuclear charge, Zeff, how to determine it, and the calculations for a valence electron of each of the five given elements: F, Li, Be, B, and N.
<u>1) Effective nuclear charge definitions</u>
- While the total positive charge of the atom nucleus (Z) is equal to the number of protons, the electrons farther away from the nucleus experience an effective nuclear charge (Zeff) less than the total nuclear charge, due to the fact that electrons in between the nucleus and the outer electrons partially cancel the atraction from the nucleus.
- Such effect on on a valence electron is estimated as the atomic number less the number of electrons closer to the nucleus than the electron whose effective nuclear charge is being determined: Zeff = Z - S.
<u><em>2) Z eff for a F valence electron:</em></u>
- F's atomic number: Z = 9
- Total number of electrons: 9 (same numer of protons)
- Period: 17 (search in the periodic table or do the electron configuration)
- Number of valence electrons: 7 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 9 - 7 = 2
- Zeff = Z - S = 9 - 2 = 7
<u><em>3) Z eff for a Li valence eletron:</em></u>
- Li's atomic number: Z = 3
- Total number of electrons: 3 (same number of protons)
- Period: 1 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 1 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 3 - 1 = 2
- Z eff = Z - S = 3 - 2 = 1.
<em>4) Z eff for a Be valence eletron:</em>
- Be's atomic number: Z = 4
- Total number of electrons: 4 (same number of protons)
- Period: 2 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 2 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 4 - 2 = 2
- Z eff = Z - S = 4 - 2 = 2
<u><em>5) Z eff for a B valence eletron:</em></u>
- B's atomic number: Z = 5
- Total number of electrons: 5 (same number of protons)
- Period: 13 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 3 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 5 - 3 = 2
- Z eff = Z - S = 5 - 2 = 3
<u><em>6) Z eff for a N valence eletron:</em></u>
- N's atomic number: Z = 7
- Total number of electrons: 7 (same number of protons)
- Period: 15 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 5 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 7 - 5 = 2
- Z eff = Z - S = 7 - 2 = 5
<u><em>7) Summary (order):</em></u>
Atom Zeff for a valence electron
- <u>Conclusion</u>: the order is Li < Be < B < N < F