<h3>Given :-</h3>
<h3>To Find :-</h3>
<h3>Solution :-</h3>
☼︎ <u>Radius of the Circle</u>;
<h3>Using Formula:</h3>
<u>Putting values in the formula;</u>
henceforth, the Radius of a circle is 14 cm ...!!
Answer:
find the perpendicular of the angle of pole
Answer:
-2, 8/3
Step-by-step explanation:
You can consider the area to be that of a trapezoid with parallel bases f(a) and f(4), and width (4-a). The area of that trapezoid is ...
A = (1/2)(f(a) +f(4))(4 -a)
= (1/2)((3a -1) +(3·4 -1))(4 -a)
= (1/2)(3a +10)(4 -a)
We want this area to be 12, so we can substitute that value for A and solve for "a".
12 = (1/2)(3a +10)(4 -a)
24 = (3a +10)(4 -a) = -3a² +2a +40
3a² -2a -16 = 0 . . . . . . subtract the right side
(3a -8)(a +2) = 0 . . . . . factor
Values of "a" that make these factors zero are ...
a = 8/3, a = -2
The values of "a" that make the area under the curve equal to 12 are -2 and 8/3.
_____
<em>Alternate solution</em>
The attachment shows a solution using the numerical integration function of a graphing calculator. The area under the curve of function f(x) on the interval [a, 4] is the integral of f(x) on that interval. Perhaps confusingly, we have called that area f(a). As we have seen above, the area is a quadratic function of "a". I find it convenient to use a calculator's functions to solve problems like this where possible.
Sec^2 x - 1 = tan^2x
Proof:
Sec^2x = 1+ tan^2x
1/cos^2x = 1 + sin^2x/cos^2x
<span>1/cos^2x - sin^2x/cos^2x = 1
</span>Using common denominator:
(1-sin^2x)/cos^2x = 1
sin^2x + cos^2 x = 1
cos^2 x = 1 - sin^2x
Substituting :
cos^2x/<span>cos^2x = 1
</span>1 = 1
Left hand side = right hand side
Answer:
15
Step-by-step explanation:
I'J' is IJ with the scale factor of 5.
so (IJ) × 5= (I'J)
(IJ) × 5= 75
75 ÷ 5= 15
I am so sorry i did the math wrong in my head, the answer is 15 not 16.