1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snowcat [4.5K]
3 years ago
5

Identify the zeros of f(x)=(x-7)(x+4)(3x-2)

Mathematics
1 answer:
alexgriva [62]3 years ago
4 0

To find the zero you must set each factor equal to zero and solve for for x like so...

Factor (x - 7)

x - 7 = 0

x = 7

Factor (x + 4)

x + 4 = 0

x = -4

Factor (3x - 2)

3x - 2 = 0

3x = 2

x = \frac{2}{3}

All the zeros are:

-4, \frac{2}{3}, 7

Hope this helped!

~Just a girl in love with Shawn Mendes

You might be interested in
What is 4.898979486 rounded to the nearest 10?
Ahat [919]
I believe is 4.9. I hope that helps
7 0
3 years ago
What is the missing length I took a picture help me plz
kakasveta [241]
10 yd. Because 16-6=10.
5 0
3 years ago
The angle of elevation from the bottom of a scenic gondola ride to the top of a mountain is 22 degrees. If the vertical distance
Oduvanchick [21]

Answer:

The correct answer is D

Step-by-step explanation:

143ft

6 0
4 years ago
Read 2 more answers
To show me similarity to this statement, how can it be done?
Alenkasestr [34]

We start with the expression at the left of the equation.

We can combine the terms as:

\begin{gathered} \frac{2+\sqrt[]{3}}{\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}}}-\frac{2-\sqrt[]{3}}{\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}}} \\ \frac{2+\sqrt[]{3}}{\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}}}\cdot\frac{(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})}-\frac{2-\sqrt[]{3}}{\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}}}\cdot\frac{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})} \\ \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})-(2-\sqrt[]{3})\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})} \end{gathered}

We can now apply the distributive property for the both the numerator and denominator. We can see also that the denominator is the expansion of the difference of squares:

\begin{gathered} \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})-(2-\sqrt[]{3})\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2})^2-(\sqrt[]{2-\sqrt[]{3}}))^2} \\ \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})+(\sqrt[]{3}-2)\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{2^{}-(2-\sqrt[]{3})^{}} \\ \frac{\sqrt[]{2}\cdot(2+\sqrt[]{3})-\sqrt[]{2-\sqrt[]{3}}\cdot(2+\sqrt[]{3})+\sqrt[]{2}\cdot(\sqrt[]{3}-2)+\sqrt[]{2-\sqrt[]{3}}\cdot(\sqrt[]{3}-2)}{2-2+\sqrt[]{3}} \\ \frac{\sqrt[]{2}(2+\sqrt[]{3}+\sqrt[]{3}-2)+\sqrt[]{2-\sqrt[]{3}}(-2-\sqrt[]{3}+\sqrt[]{3}-2)}{\sqrt[]{3}} \\ \frac{\sqrt[]{2}(2\sqrt[]{3})+\sqrt[]{2-\sqrt[]{3}}(-4)}{\sqrt[]{3}} \\ 2\sqrt[]{2}-4\frac{\sqrt[]{2-\sqrt[]{3}}}{\sqrt[]{3}} \end{gathered}

We then can continue rearranging this as:

7 0
1 year ago
Derek decorates more cookies. He plots the point (5,10) on the coordinate plane. what is the meaning of point (5, 10)?
slega [8]

Answer:

A. don't know if this helps but with plotting but (x, y) the x always comes first

8 0
3 years ago
Other questions:
  • PLEASE HELP WILL GIVE THANKS AND FIVE STARS IF RIGHT ANSWER
    9·1 answer
  • Divide using synthetic division (2x^3 + 14x^2 - 58x) / (x + 10) 58 POINTS!!!!
    8·1 answer
  • 42. A cylinder has a base of 36 π in² and a volume of 432π in³. What is the surface area of the same cylinder? *
    9·1 answer
  • Please help
    9·1 answer
  • ? - 6= - 7<br> what is the answer
    14·2 answers
  • How does writing a function rule as an equation help you solve problems with more than one situation or parameter?
    13·1 answer
  • | 4x +2|=10 confirm your solution using a graph or table
    10·2 answers
  • Brian saved 30% of the money he earned.If brain earned $260,how much did he save?
    6·2 answers
  • HELP PLZ ILL GIVE BRAINLIEST
    14·1 answer
  • Write an equation of the line
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!