Good electrical conductivity and electronegativities less than 1.7 are the properties and characteristic of Group 2 elements at STP.
<h3>What are the properties of group 2 elements?</h3>
Group 2 elements are metals so they are good conductors of heat and electricity. It has electronegativity values less than 1.7 and very reactive. They form 2+ charge in cationic form and also formed ionic bonds with other negatively charged elements.
So we can conclude that good electrical conductivity and electronegativities less than 1.7 are the properties and characteristic of Group 2 elements at STP.
Learn more about electronegativity here: brainly.com/question/2415812
#SPJ1
Answer:
<h3>
<u>A). react with acid that is added and make a base.</u></h3>
explanation:
<em>Buffer solutions resist a change in pH when small amounts of a strong acid or a strong base are added.</em>
Answer:
At STP, 760mmHg or 1 atm and OK or 273 degrees celcius
Explanation:
The standard temperature and pressure is the temperature and pressure at which we have the molecules of a gas behaving as an ideal gas. At this temperature and pressure, it is expected that the gas exhibits some properties that make it behave like an ideal gas.
This temperature and pressure conform some certain properties on a gas molecule which make us say it is behaving like an ideal gas. Ordinarily at other temperatures and pressures, these properties are not obtainable
Take for instance, one mole of a gas at stp occupies a volume of 22.4L. This particular volume is not obtainable at other temperatures and pressures but at this particular temperature and pressure. One mole of a gas will occupy this said volume no matter its molar mass and constituent elements. This is because at this temperature and pressure, the gas is expected to behave like an ideal gas and thus exhibit the characteristics which are expected of an ideal gas
Answer:
0.02 moles.
Explanation:
volume of H₂ gas at R.T.P = 480 cm³
Where
R.T.P = room temperature and pressure
molar volume of gas at = 24000 cm³
no. of moles of hydrogen = ?
Solution:
formula Used
no. of moles = volume of gas / molar volume
put values in above equation
no. of moles = 480 cm³ / 24000 cm³/mol
no. of moles = 0.02 mol
So,
no. of moles of hydrogen in 480 cm³ is 0.02 moles.
C16H32O2(aq) --> 16CO2(g) + 16H2O(l) ... said its wrong though?
<span>This is because you haven't added any oxygen needed for the combustion, so your equation does'nt balance. Also a solution in water [aq] doesn't burn! </span>
<span>Try </span><span>C16H32O2(s) + 23O2(g) --> 16CO2(g) + 16H2O(l)
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>