Answer:
ghysdjoraiwiiwiwieidhdhdhdhd
sjjsjsndjdjd
djsi
As we know that 760 mmHg is equal to 1 atm.
So,
If 760 mmHg is equal to = 1 atm
Then
738 mmHg will be equal to = X atm
Solving for X,
X = (738 mmHg × 1 atm) ÷ 760 mmHg
X = 0.971 atm
Result:
738 mmHg is equal to 0.971 atm.
Answer:
-100 kJ
Explanation:
We can solve this problem by applying the first law of thermodynamics, which states that:

where:
is the change in internal energy of a system
Q is the heat absorbed/released by the system (it is positive if absorbed by the system, negative if released by the system)
W is the work done by the system (it is positive if done by the system, negative if done on the system)
For the system in this problem we have:
W = +147 kJ is the work done by the system
Q = +47 kJ is the heat absorbed by the system
So , its change in internal energy is:

Answer:
A. Can A will make a louder and stronger fizz than can B.
Explanation:
The solubility of a gas in a liquid decreases as the temperature increases, so the warmer can will have more undissolved carbon dioxide.
The warmer can will be under greater pressure, so it will make a louder and stronger fizz.