Answer:
<u>The correct answer is 0.556 Watts</u>
Explanation:
The computer monitor uses 200 Watts of power in an hour, that is the standard measure.
If we want to know, how much energy the computer monitor uses in one second, we will have to divide both sides of the equation into 3,600.
1 hour = 60 minutes = 3,600 seconds (60 x 60)
Energy per second = 200/3600
Energy per second = 0.0556 Watts
Therefore to calculate how much energy is used in 10 seconds, we do this:
Energy per second x 10
<u>0.0556 x 10 = 0.556 Watts</u>
<u>The computer monitor uses 0.556 Watts in 10 seconds</u>
A persons or animals nature, especially as it permanently affects their behavior
I don't completely understand your drawing, although I can see that you certainly
did put a lot of effort into making it. But calculating the moment is easy, and we
can get along without the drawing.
Each separate weight has a 'moment'.
The moment of each weight is:
(the weight of it) x (its distance from the pivot/fulcrum) .
That's all there is to a 'moment'.
The lever (or the see-saw) is balanced when (the sum of all the moments
on one side) is equal to (the sum of the moments on the other side).
That's why when you're on the see-saw with a little kid, the little kid has to sit
farther away from the pivot than you do. The kid has less weight than you do,
so he needs more distance in order for his moment to be equal to yours.
maximum static friction acting on the object will be

plug in all values

So here it means that if applied force is less than or equal to 58.8 N then the object will remain stationary as friction can balance the external force upto this limit of external force
So here it is given that applied force is 20 N
so here object will not move due to this force and it will remain at rest always
due to this applied force
T<span>he equation to be used here to determine the distance between two equipotential points is:
V = k * Q / r
where v is the voltage of the point, k is a constant, Q is charge of the point measured in coloumbs and r is the distance.
In this case, we can use ratio of proportions to determine the distance between the two points. in this respect,
Point 1:
V = k * Q / r = 290
r = k*Q/290 ; kQ = 290r
Point 2:
V = k * Q / R = 41
R = k*Q/41
from equation 10 kQ = 290r
R = 290/(41)= 7.07 m
The distance between the two points then is equal to 7.07 m.
</span>