Answer:
Pressure is equal to the ratio of thrust to the area in contact. Upthrust is a force exerted by the fluids on an object placed in the fluid . Upthrust acts in upward direction.
Answer: 2561.7 pounds
Explanation:
If we assume the total weight of an airplane (in pounds units) as a <u>linear function</u> of the amount of fuel in its tank (in gallons) and we make a Weight vs amount of fuel graph, which resulting slope is 5.7, we can use the slope equation of the line:
(1)
Where:
is the slope of the line
is the airplane weight with 51 gallons of fuel in its tank (assuming we chose the Y axis for the airplane weight in the graph)
is the fuel in airplane's tank for a total weigth of 2390.7 pounds (assuming we chose the X axis for the a,ount of fuel in the tank in the graph)
This means we already have one point of the graph, which coordinate is:

Rewritting (1):
(2)
As Y is a function of X:
(3)
Substituting the known values:
(4)
(5)
(6)
Now, evaluating this function when X=81 (talking about the 81 gallons of fuel in the tank):
(7)
(8) This means the weight of the plane when it has 81 gallons of fuel in its tank is 2561.7 pounds.
Answer:
ice (solid), water (liquid) and vapor (gas)
Explanation:
Answer:
1387908 lbm/h
Explanation:
Air flowing into jet engine = 70 lbm/s
ρ = Exhaust gas density = 0.1 lbm/ft³
r = Radius of exit with a circular cross section = 1 ft
v = Exhaust gas velocity = 1450 ft/s
Exhaust gas mass (flow rate)= Air flowing into jet engine + Fuel
Q = (70+x) lbm/s
Area of exit with a circular cross section = π×r² = π×1²= π m²
Now from energy balance
Q = ρ×A×v
⇒70+x = 0.1×π×1450
⇒70+x = 455.53
⇒ x = 455.53-70
⇒ x = 385.53 lbm/s
∴ Mass of fuel which is supplied to the engine each minute is 1387908 lbm/h