Answer:
c. (12.12, 18.48)
Step-by-step explanation:
Hello!
The study variable is X: number of times a racehorse is raced during its career.
The average number is X[bar]= 15.3 and the standard deviation is S= 6.8 obtained from a sample of n=20 horses.
To estimate the population mean you need that the variable has a normal distribution, in this case, we have no information about its distribution so I'll assume that it has a normal distribution. With n=20 the most accurate statistic to use for the estimation is a Students-t for one sample, the formula for the interval is:
X[bar] ± 

[15.3 ± 2.093 *
]
[12.12; 18.48]
Using a significance level of 95% you'd expect that the true average of times racehorses are raced during their career is included in the interval [12.12; 18.48].
I hope it helps!
Answer:
Step-by-step explanation:
We have the equations
4x + 3y = 18 where x = the side of the square and y = the side of the triangle
For the areas:
A = x^2 + √3y/2* y/2
A = x^2 + √3y^2/4
From the first equation x = (18 - 3y)/4
So substituting in the area equation:
A = [ (18 - 3y)/4]^2 + √3y^2/4
A = (18 - 3y)^2 / 16 + √3y^2/4
Now for maximum / minimum area the derivative = 0 so we have
A' = 1/16 * 2(18 - 3y) * -3 + 1/4 * 2√3 y = 0
-3/8 (18 - 3y) + √3 y /2 = 0
-27/4 + 9y/8 + √3y /2 = 0
-54 + 9y + 4√3y = 0
y = 54 / 15.93
= 3.39 metres
So x = (18-3(3.39) / 4 = 1.96.
This is a minimum value for x.
So the total length of wire the square for minimum total area is 4 * 1.96
= 7.84 m
There is no maximum area as the equation for the total area is a quadratic with a positive leading coefficient.
Answer:
there is some of it sorry cant realy help
Step-by-step explanation:
3x+2x=5x 5*5=25