Answer:
<em>b) false</em>
Explanation:
The scale of a map is the ratio of a distance on the map to the corresponding distance on the ground. Scaling allow us to capture a large geographical area on a reduced platform while still retaining the relative sizes and positioning of places on the map to their real life sizes and positioning. If both maps cover a standard 8.5 by 11-inch sheet of paper, then the map with the smaller ratio will have the bigger geographical area.
To understand better, let us assume two geographical areas A and B. A is bigger than B. If we were to put them both on the same area of map paper, then we'll have to scale up the smaller geographical area B so as to fit into the map paper. This means that the geographical area with the smaller area B will have the larger scale on the map.
Answer:
Option B is correct.
Explanation:
Given data
Height of the hill = AB = 1 m
Distance traveled along the rough bottom surface = AC = 2 m
Now from the ΔABC


°
We know that the coefficient of kinetic friction is


0.5
This is the value of the coefficient of kinetic friction
Thus option B is correct.
<span> In AC (alternating current) flow, like what comes out of your wall, the flow of electrons changes direction 60 times per second (50 times per second in Europe, China, etc). But in DC (direct current) flow, the average flow of electrons is in one direction only.
I hope it helped you</span>
Answer:
Explanation:
In an elliptical orbit , the angular momentum of the planet remains constant because velocity of planet makes a right angle to the direction to the star .
mvr = constant .
mv₁r₁ = mv₂r₂
v₁r₁ = v₂r₂
v₁ x 21 = 38 x 75
v₁ = 135.71 km/s .