Answer: D
Height of marble from ground
Explanation:
From the formula of kinetic energy and potential energy,
K.E = 1/2mv^2
While
P.E = mgh
From all the parameters given from the question. You can see that mass is constant, acceleration due to gravity is also constant.
Independent variable must be a value that can varies.
Since Jack rolled a marble down a ramp and recorded the potential energy and kinetic energy of the marble at different positions on the ramp to see the effects on both energies.
This different position must be the height which will produce an effect on the potential and kinetic energy of the marble.
Independent variable always provides an effect for dependent variable. Which are kinetic energy and potential energy in this case.
Height of marble from ground is the right answer.
A theory is an idea that is widely agreed on by scientists and can be changed when new info comes to light while a hypothesis is an educated guess sometimes based on prior knowledge.
Answer:
She must be launched with minimum speed of <u>57.67 m/s</u> to clear the 520 m gap.
Step-by-step explanation:
Given:
The angle of projection of the projectile is,
°
Range of the projectile is,
m.
Acceleration due to gravity, 
The minimum speed to cross the gap is the initial speed of the projectile and can be determined using the formula for range of projectile.
The range of projectile is given as:

Plug in all the given values and solve for minimum speed,
.

Therefore, she must be launched with minimum speed of 57.67 m/s to clear the 520 m gap.
"Describing how copper changes color in chlorine" is the answer I think is right. Hope this helped!
Answer:
Impedance = 19.44ohms
Current = 5.14A
Power factor = 0.62
Explanation:
Impedance in an RLC AC circuit is defined as the total opposition to the flow of current in the resistor, inductor and capacitor.
Impedance Z = √R²+(Xl-Xc)²
Where R is the resistance = 12Ω
Inductance L = 0.15H
Capacitance C = 100uF = 100×10^-6F
Since Xl = 2πfL and Xc = 1/2πfC where f is the frequency.
Xl = 2π×50×0.15
Xl = 15πΩ
Xl = 47.12Ω
Xc = 1/2π×50×100×10^-6
Xc = 100/π Ω
Xc = 31.83Ω
Z =√12²+(47.12-31.83)²
Z = √144+233.78
Z = 19.44Ω
Impedance = 19.44ohms
To calculate the circuit current, we will use the expression V=IZ where V is the supply voltage = 100V
I = V/Z = 100/19.44
I = 5.14Amperes
To calculate the power factor,
Power factor = cos(theta) where;
theta = arctan(Xl-Xc)/R
theta = arctan(47.12-31.83)/12
theta = arctan(15.29/12)
theta = arctan1.27
theta = 51.78°
Power factor = cos51.78°
Power factor = 0.62