Answer:
3.14 × 10⁻⁴ m³ /s
Explanation:
The flow rate (Q) of a fluid is passing through different cross-sections remains of pipe always remains the same.
Q = Area x velocity
Given:
Diameters of 3 sections of the pipe are given as
d1 = 1.0 cm, d2 = 2.0 cm and d3 = 0.5 cm.
Speed in the first segment of the pipe is
v1 = 4 m/s.
From the equation of continuity the flow rate through different cross-sections remains the same.
Flow rate = Q = A1 v1 = A2 v2 = A3 v3.
Q = A1v1
=π/4 d²1 v1 = π/4 * 0.01² ×4.0 m³/s = 3.14 × 10⁻⁴ m³ /s
Answer:
D I think I might be wrong its been a while scense I did something like that
<span>What we need to first do is split the ball's velocity into vertical and horizontal components. To do that multiply by the sin or cos depending upon if you're looking for the horizontal or vertical component. If you're uncertain as to which is which, look at the angle in relationship to 45 degrees. If the angle is less than 45 degrees, the larger value will be the horizontal speed, if the angle is greater than 45 degrees, the larger value will be the vertical speed. So let's calculate the velocities
sin(35)*18 m/s = 0.573576436 * 18 m/s = 10.32437585 m/s
cos(35)*18 m/s = 0.819152044 * 18 m/s = 14.7447368 m/s
Since our angle is less than 45 degrees, the higher velocity is our horizontal velocity which is 14.7447368 m/s.
To get the x positions for each moment in time, simply multiply the time by the horizontal speed. So
0.50 s * 14.7447368 m/s = 7.372368399 m
1.00 s * 14.7447368 m/s = 14.7447368 m
1.50 s * 14.7447368 m/s = 22.1171052 m
2.00 s * 14.7447368 m/s = 29.48947359 m
Rounding the results to 1 decimal place gives
0.50 s = 7.4 m
1.00 s = 14.7 m
1.50 s = 22.1 m
2.00 s = 29.5 m</span>
Answer:
C
Explanation:
C. a system that converts thermal energy into other useful forms of energy