The answer is A. <span>Some work input is used to overcome friction. </span>
The correct answer for the question that is being presented above is this one: "a. only from an instructor or supervisor." Ideally, rewards should be given immediately and frequently but <span>only from an instructor or supervisor to show authority. </span>
Answer: 15.66 °
Explanation: In order to solve this proble we have to consirer the Loretz force for charge partcles moving inside a magnetic field. Thsi force is given by:
F=q v×B = qvB sin α where α is teh angle between the velocity and magnetic field vectors.
From this expression and using the given values we obtain the following:
F/(q*v*B) = sin α
3.8 * 10^-13/(1.6*10^-19*8.9*10^6* 0.96)= 0.27
then α =15.66°
Answer:
How far will the electron travel beforehitting a plate is 248.125mm
Explanation:
Applying Gauss' law:
Electric Field E = Charge density/epsilon nought
Where charge density=1.0 x 10^-6C/m2 & epsilon nought= 8.85× 10^-12
Therefore E = 1.0 x 10^-6/8.85× 10^-12
E= 1.13×10^5N/C
Force on electron F=qE
Where q=charge of electron=1.6×10^-19C
Therefore F=1.6×10^-19×1.13×10^5
F=1.808×10^-14N
Acceleration on electron a = Force/Mass
Where Mass of electron = 9.10938356 × 10^-31
Therefore a= 1.808×10^-14 /9.11 × 10-31
a= 1.985×10^16m/s^2
Time spent between plate = Distance/Speed
From the question: Distance=1cm=0.01m and speed = 2×10^6m/s^2
Therefore Time = 0.01/2×10^6
Time =5×10^-9s
How far the electron would travel S =ut+ at^2/2 where u=0
S= 1.985×10^16×(5×10^-9)^2/2
S=24.8125×10^-2m
S=248.125mm
Answer:
Explanation:
Did you ever end up getting an answer? Or like did you find out which segment it was?