Answer:
The minimum value of width for first minima is λ
The minimum value of width for 50 minima is 50λ
The minimum value of width for 1000 minima is 1000λ
Explanation:
Given that,
Wavelength = λ
For D to be small,
We need to calculate the minimum width
Using formula of minimum width


Where, D = width of slit
= wavelength
Put the value into the formula

Here,
should be maximum.
So. maximum value of
is 1
Put the value into the formula


(b). If the minimum number is 50
Then, the width is


(c). If the minimum number is 1000
Then, the width is


Hence, The minimum value of width for first minima is λ
The minimum value of width for 50 minima is 50λ
The minimum value of width for 1000 minima is 1000λ
Volume= Length X width X height.
Plug in the values for each and solve for the volume.
V= (L)(W)(H)
V=(4cm)(5cm)(10cm).
To solve this problem we will apply the concepts related to the calculation of the speed of sound, the calculation of the Mach number and finally the calculation of the temperature at the front stagnation point. We will calculate the speed in international units as well as the temperature. With these values we will calculate the speed of the sound and the number of Mach. Finally we will calculate the temperature at the front stagnation point.
The altitude is,

And the velocity can be written as,


From the properties of standard atmosphere at altitude z = 20km temperature is



Velocity of sound at this altitude is



Then the Mach number



So front stagnation temperature



Therefore the temperature at its front stagnation point is 689.87K
Using Fleming’s left hand rule,
The magnetic force on the electron will be west. Example: If it is dropped above the equator in Africa, the electron will head towards North America.
Distance = speed X time
In this example, the speed of the airplane = 840km. The time (that the question is asking)is how far can it travel in 1 hour.
So just plug in your numbers.
Distance = 840km X 1 hour = 840km/hour or 840km for short.