Answer:
<em>Elevator That Is Moving Downwards At A Constant Speed Of 4.9 M/S. What Is The Magnitude Of The Net Force Acing On The Student?</em>
<em>This problem has been solved!</em>
<em>This problem has been solved!See the answer</em>
<em>This problem has been solved!See the answerA student weighs 1200N. They are standing in an elevator that is moving downwards at a constant speed of </em><em>4.9 m/s. What is the magnitude of the net force acing on the student?</em>
The first one is decreases because there are less molecules in the air.
The second on would be the last option, August 29, because a new moon occurs every 29 days.
The answer for the last one would be A, I presume, because when air masses arrive at a destination, it becomes dry.
Work = Force x distance
(10 pounds)(2 feet)
Work = 20 foot-pounds of work
hope this helps :)
Answer:
36.22 mA
Explanation:
i1 = I , i2 = I, d = 8.2 cm = 0.082 m
Force per unit length = 3.2 nN/m = 3.2 x 10^-9 N/m
μo = 4 π × 10^-7 Tm/A
The formula for the force per unit length between the two wires is given by
F = μo / 4π x (2 i1 x i2) / d
3.2 x 10^-9 = 10^-7 x 2 x I^2 / 0.082
I = 0.0362 A = 36.22 mA
Answer:41.991ml
Explanation:
Equations: 2 H2O → 4H+ + 4e + O2 OXIDATION
2 H+ + 2e → H2 REDUCTION
Electrolysis is the chemical decomposition of compounds when electricity is made to pass through a molten compound or solution.
from the oxidation reaction:
1moles of oxygen requires 4moles of electrons to be discharged at the product
F=96500C/mol
Quantity of charge Q=It
=60*60*0.201A
Q=723.6C
Mole=Q/(F*mole ratio of electron)
Mole= 723.6/(4*96500)
Mole=((1809)/(965000))
M=0.0018746114
M1/M2=V1/V2
1/0.00187=22.4dm^3/V2
V2=22.4*0.00187
V2=0.04199129534dm^3
41.99129534ml