Here in crash test the two forces are acting on the dummy in two different directions
As we know that force is a vector quantity so we need to use vector addition laws in order to find the resultant force on it.
So here two forces are given in perpendicular direction with each other so as per vector addition law we need to use Pythagoras theorem to find the resultant of two vectors
so we can say

here given that


now we will plug in all data in the above equation


so it will have net force 4501.9 N which will be reported by sensor
I think D. It starts at (0.0) and goes to the correct points so it makes sense
Answer:
Vf = 69.56 cm/s
Explanation:
In order to find the final speed of the ramp, we will use the equations of motion. First we use second equation of motion to find out the acceleration of marble:
s = Vi t + (1/2)at²
where,
s = distance traveled = 160 cm
Vi = Initial Speed = 0 cm/s (since, marble starts from rest)
t = time interval = 4.6 s
a = acceleration = ?
Therefore,
160 cm = (0 cm/s)(4.6 s) + (1/2)(a)(4.6 s)²
a = (320 cm)/(4.6 s)²
a = 15.12 cm/s²
Now, we use first equation of motion:
Vf = Vi + at
Vf = 0 cm/s + (15.12 cm/s²)(4.6 s)
<u>Vf = 69.56 cm/s</u>
Answer:
All the three quantities will have non zero joules.
Explanation:
At the initial position of rest the system will have only gravitational potential energy while the other 2 quantities will be zero.
when the system reaches a height (y-h) only kinetic energy will be zero while the other 2 quantities will be non zero
At the position of (y-h/2) all the 3 quantities will be non zero.