Answer:
1. The precession of the equinoxes.
2. Changes in the tilt angle of Earth’s rotational axis relative to the plane of Earth’s orbit around the Sun.
3. Variations in the eccentricity
Explanation:
These variations listed above; the precession of the equinoxes (refers, changes in the timing of the seasons of summer and winter), this occurs on a roughly about 26,000-year interval; changes in the tilt angle of Earth’s rotational axis relative to the plane of Earth’s orbit around the Sun, this occurs roughly in a 41,000-year interval; and changes in the eccentricity (that is a departure from a perfect circle) of Earth’s orbit around the Sun, occurring on a roughly 100,000-year timescale. which influences the mean annual solar radiation at the top of Earth’s atmosphere.
kinetic is moving
so kinetic energy is something that moves
Let's see what variables we've got first. Hmmm. We have:
Displacement, d = 28 m
Time taken, t = 11 s
Initial velocity, u = 0 m/s (at rest)
And now we need to find the final velocity, v. Among the 4 (or 5) equations of motions, there's no equation that will let us simply plug in the values and give an answer sigh. But fear not! We'll do it in steps.
I'm going to pick one of the motion equation to find more information:

I know everything except for a in this one, so I I'll use this! After plugging in values, I get a = 0.4628 m/s^2.
Now I'm going to use another motion equation that has v in it because that needs to be solved!

Now I know everything except dial velocity v. Nice!
v = 0 + (0.4628)(11)
Answer:
P = 359.8 atm
Explanation:
The van der Waals' equation relates the properties of a gas, introducing constants "a" and "b" in order to consider gases as real gases. The equation is:

where,
P: pressure
a: correction factor for intermolecular forces
V: volume
b: correction factor for molecules' volume
n: moles
R: ideal gas constant
T: absolute temperature
