Answer:
A
Explanation:
A. The pencil is on the table in broad daylight
Thermal energy is converted to radiative energy via molecular collisions and released as photons.
Answer:

Explanation:
First we have to find the time required for train to travel 60 meters and impact the car, this is an uniform linear motion:

The reaction time of the driver before starting to accelerate was 0.50 seconds. So, remaining time for driver is 1.5 seconds.
Now, we have to calculate the distance traveled for the driver in this 0.5 seconds before he start to accelerate. Again, is an uniform linear motion:

The driver cover 10 meters in this 0.5 seconds. So, the remaining distance to be cover in 1.5 seconds by the driver are 35 meters. We calculate the minimum acceleration required by the car in order to cross the tracks before the train arrive, Since this is an uniformly accelerated motion, we use the following equation:

Answer: f=150cm in water and f=60cm in air.
Explanation: Focal length is a measurement of how strong light is converged or diverged by a system. To find the variable, it can be used the formula:
= (nglass - ni)(
-
).
nglass is the index of refraction of the glass;
ni is the index of refraction of the medium you want, water in this case;
R1 is the curvature through which light enters the lens;
R2 is the curvature of the surface which it exits the lens;
Substituting and calculating for water (nwater = 1.3):
= (1.5 - 1.3)(
-
)
= 0.2(
)
f =
= 150
For air (nair = 1):
= (1.5 - 1)(
-
)
f =
= 60
In water, the focal length of the lens is f = 150cm.
In air, f = 60cm.