The spring constant is 147 N/m
Given the mass of the block is 2.00 kg , the mass of the body is 300 g and the length of the spring is 2.00 cm
We need to find the spring constant
A spring is an object that can be deformed by a force and then return to its original shape after the force is removed.
The force required to stretch an elastic object such as a metal spring is directly proportional to the extension of the spring
We know that F = kx
300(9.8)= k (0.02)
k = 147.15 N/m
Rounding off to the nearest is 147N/m
The spring constant is 147N/m
Learn more about Hooke's law here
brainly.com/question/15365772
#SPJ4
Answer:
because energy will be lost due to friction, sound, and heat (arguably similar to friction) and ENERGY MUST STAY THE SAME so it is IMPOSSIBLE for the ball to bounce higher than when dropped!
Answer:
10 kg
Explanation:
The question is most likely asking for the mass of the bicycle.
Momentum is the product of an object's mass and velocity. Mathematically:
p = m * v
Where p = momentum
m = mass
v = velocity
Hence, mass is:
m = p / v
From the question:
p = 25 kgm/s
v = 2.5 m/s
Mass is:
m = 25 / 2.5 = 10 kg
The mass of the bicycle is 10 kg.
In case the question requires the Kinetic energy of the bicycle, it can be gotten by using the formula
K. E = ½ * p * v
K. E. = ½ * 25 * 2.5 = 31.25 J
Solution :
Frequency may be defined as the number of observation or number of waves that is taken in per unit time. The unit of frequency is Hertz or Hz.
It is given that :
Successive harmonic frequencies, f = 52.2 Hz
and f' = 60.9 Hz
Therefore, fundamental frequency, F = f' - f
F = 60.9 - 52.2
F = 8.7 Hz
Therefore the string which is fixed at both the ends forms all the harmonics.