Answer:
v₂ = 176.24 m/s
Explanation:
given,
angle of projectile = 45°
speed = v₁ = 150 m/s
for second trail
speed = v₂ = ?
angle of projectile = 37°
maximum height attained formula,

now,


now, equating both the equations


v₂² = 31061.79
v₂ = 176.24 m/s
velocity of projectile would be equal to v₂ = 176.24 m/s
Answer:
Angular acceleration will be 
Explanation:
We have given that mass m = 0.18 kg
Radius r = 0.32 m
Initial angular velocity 
And final angular velocity 
Time is given as t = 8 sec
From equation of motion
We know that 


So angular acceleration will be 
Answer:
have a component along the direction of motion that remains perpendicular to the direction of motion
Explanation:
In this exercise you are asked to enter which sentence is correct, let's start by writing Newton's second law.
circular movement
F = m a
a = v² / r
F = m v²/R
where the force is perpendicular to the velocity, all the force is used to change the direction of the velocity
in linear motion
F = m a
where the force is parallel to the acceleration of the body, the total force is used to change the modulus of the velocity
the correct answer is: have a component along the direction of motion that remains perpendicular to the direction of motion
If its atomic number is 48, then it has 48 protons in the nucleus
of each atom. Any more mass than that is supplied by the neutrons
that are mixed in there with the protons.
If the mass is 167, and 48 of those are protons, then there are
(167 - 48) = 119 neutrons
in each nucleus.
This is a uniform rectilinear motion (MRU) exercise.
To start solving this exercise, we obtain the following data:
<h3><u>
Data:</u></h3>
- v = 4.6 m/s
- d = ¿?
- t = 10 sec
To calculate distance, speed is multiplied by time.
We apply the following formula: d = v * t.
We substitute the data in the formula: the <u>speed is equal to 4.6 m/s,</u> the <u>time is equal to 10 s</u>, which is left as follows:


Therefore, the speed at 10 seconds is 46 meters.
