Answer:
R = 668.19 ft
Explanation:
given,
speed of the ball thrown by the pitcher = 100 mph
to travel maximum distance θ = 45°
distance traveled by the ball = ?
using formula
1 mph = 0.44704 m/s
100 mph = 44.704 m/s


R = 203.71 m
1 m = 3.28 ft
R = 203.71 × 3.28
R = 668.19 ft
hence, ball will go at a distance of 668.19 ft when pitcher throw it at 100 mph.
D is the point where the planet moves the fastest. This is because it is in the perihelion, where the planet is moving at it’s fastest pace
Answer:
A. True.
Explanation:
It['s true because the basic and general definition of media is "methods for communicating information".
-- The net vertical force on the object is zero.
Otherwise it would be accelerating up or down.
-- The net horizontal force on the object is zero.
Otherwise it would be accelerating horizontally,
that is, its 'velocity' would not be constant. That
would contradict information given in the question.
The total net force on the object is the resultant of the
net vertical component and net horizontal component.
Total net force = √(0² + 0²)
= √(0 + 0)
= √0
= Zero.
The correct answer is the last choice on the list.
Also, you know what ! ? It doesn't even matter whether the surface it's
sliding on is frictionless or not.
If the object's velocity is constant, then the NET force on it must be zero.
If it's sliding on sandpaper, then something must be pushing it with constant
force, to balance the friction force, and make the net force zero. If the total
net force isn't zero, then the object would have to be accelerating ... either
its speed, or its direction, or both, would have to be changing.
Answer:
lol
Explanation:
lolllll i need points sorry