Answer:
The magnitude of the lift force L = 92.12 kN
The required angle is ≅ 16.35°
Explanation:
From the given information:
mass of the airplane = 9010 kg
radius of the airplane R = 9.77 mi
period T = 0.129 hours = (0.129 × 3600) secs
= 464.4 secs
The angular speed can be determined by using the expression:
ω = 2π / T
ω = 2 π/ 464.4
ω = 0.01353 rad/sec
The direction 

θ = 16.35°
The magnitude of the lift force L = mg ÷ Cos(θ)
L = (9010 × 9.81) ÷ Cos(16.35)
L = 88388.1 ÷ 0.9596
L = 92109.32 N
L = 92.12 kN
Answer: vf1/vf2= 1/ sqrt(2)
Explanation :on the moon no drag force so we have only the force of gravity. aceleration is g(moon)= 1.62m/s2.the rest is basic kinematics
if the rock travels H to the bottom we can calculate velocity:
vo=0m/s (drops the rock) , yo=0
vf*vf= vo*vo+2g(y-yo)
when the rock is halfway y = H/2 so:
vf1*vf1=2*g*H/2 so vf1 = sqrt(gH)
when the rock reach the bottom y=H so:
vf2*vf2=2*g*H so vf2 = sqrt(2gH)
so vf1/vf2= 1/ sqrt(2)
good luck from colombia
Answer:
Length of the pendulum will be 3.987 m
Explanation:
We have given time period of the pendulum T = 8 sec
Acceleration due to gravity 
We have to find the length of the simple pendulum
We know that time period of the simple pendulum is given by



So length of the pendulum will be 3.987 m