<span>The mechanical advantage to simple machines is that they allow a decreased input force to create a larger output force.
<span>TRUE</span></span>
Answer:
false statement : b ) For the motion of a cart on an incline plane having a coefficient of kinetic friction of 0.5, the magnitude of the change in kinetic energy equals the magnitude of the change in gravitational potential energy
Explanation:
mechanical energy = potential energy + kinetic energy = constant
differentiating both side
Δ potential energy + Δ kinetic energy = 0
Δ potential energy = - Δ kinetic energy
first statement is true.
Friction is a non conservative force so inter-conversion of potential and kinetic energy is not possible in that case. In case of second option, the correct relation is as follows
change in gravitational potential energy = change in kinetic energy + work done against friction .
So given 2 nd option is incorrect.
In case of no change in gravitational energy , work done is equal to
change in kinetic energy.
Answer:
Explanation:
Let assume begins movement at zero point, that is, height is equal to zero. The block has an initial linear kinetic energy and no gravitational potential energy and end with no linear kinetic energy, some gravitational potential energy and work losses due to slide friction. In mathematical terms, this system can be model as follows:

Where
are linear kinetic energy, gravitational potential energy and work, respectively.
Answer:
E=0
Explanation:
The electric field at the centre of the shell is zero because total enclosed charge in the nucleus is zero
Answer:
a) Temperatura, b) Temperature, c) Constant
, d) None of these
, e) Gibbs enthalpy and free energy (G)
Explanation:
a) the expression for ideal gases is PV = nRT
Temperature
b) The internal energy is E = K T
Temperature
c) S = ΔQ/T
In an isolated system ΔQ is zero, entropy is constant
Constant
d) all parameters change when changing status
None of these
e) Gibbs enthalpy and free energy