Answer:
I do belive that it is B hrs cn I an gn
Answer:
Faraday's law
, he direction of the magnetic field changes by 180º, in the polarity inversion processes, induces a voltage.
Explanation:
For this exercise let's use Faraday's law
E = - dФ / dt
Ф = B.A = B A cos θ
where B is the magnetic field, A is the area and θ is the angle between the field line and the normal to the area.
We can see that an electromotive force (voltage) is indexed when there is a variation of the field B, a variation of the area and change of the angle or when there is a combinational of them.
In this case, the magnitude of the field is constant, as the wire is rigid metal, the area is constant, but the direction of the magnetic field changes by 180º, in the polarity inversion processes, for which reason each change induces a voltage.
If a voltage is created in the ring, which has a resistance, a current is also generated in it.
Therefore the answer is If a current is created in the hoop
Melting
we know that ice melts at 0 ⁰C. in the graph, at position B, the temperature is constant, which indicates that phase change is taking place there. at B , from the graph , we also notice that the temperature is constant at value 0 ⁰C. this indicates that ice at 0 ⁰C is converting to water at 0 ⁰C there at position B in the graph.
hence the correct choice is Melting.
The main difference between the model of the atom proposed by Greek philosophers and the model proposed centuries later by Dalton is that the Greek one was mainly speculative and philosophical - it wasn't based on real evidence, but on their suggestions and thoughts about the matter. On the other hand, Dalton had the means to prove his theory using viable evidence, not just speculations.
Answer:
20 seconds.
Explanation:
The following data were obtained from the question:
Distance = 10 m
Speed = 0.5 m/s
Time =...?
The speed of an object is simply defined as the distance travelled by the object per unit time. Mathematically, it is expressed as:
Speed = Distance /time
With the above formula, we can obtain the time taken for the ball to travel a distance of 10 m as shown below:
Distance = 10 m
Speed = 0.5 m/s
Time =...?
Speed = Distance /time
0.5 = 10/time
Cross multiply
0.5 × time = 10
Divide both side by 0.5
Time = 10/0.5
Time = 20 secs.
Therefore, it will take 20 seconds for the ball to travel a distance of 10 m.