In
order to solve for a nth term in an arithmetic sequence, we use the formula
written as:<span>
an = a1 + (n-1)d
where an is the nth term, a1 is the first value
in the sequence, n is the term position and d is the common difference.
First, we need to calculate for d from the given
values above.
<span>a3 = 20.5 and a8 = 13
</span>
an = a1 + (n-1)d
20.5 = a1 + (3-1)d
</span>an = a1 + (n-1)d
13 = a1 + (8-1)d
<span>
a1 = 23.5
d = -1.5
The 11th term is calculated as follows:
a11 = a1 + (n-1)d
a11= 23.5 + (11-1)(-1.5)
a11 =
8.5</span>
Answer:
1/1000
Step-by-step explanation:
Answer: We can
Step-by-step explanation: 20.00
- 1.97
Answer:
(-2, -8)
x = -2
y = -8
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Order of Operations: BPEMDAS
- Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define systems</u>
13x - 6y = 22
x = y + 6
<u>Step 2: Solve for </u><em><u>y</u></em>
<em>Substitution</em>
- Substitute in <em>x</em>: 13(y + 6) - 6y = 22
- Distribute 13: 13y + 78 - 6y = 22
- Combine like terms: 7y + 78 = 22
- Isolate <em>y</em> term: 7y = -56
- Isolate <em>y</em>: y = -8
<u>Step 3: Solve for </u><em><u>x</u></em>
- Define original equation: x = y + 6
- Substitute in <em>y</em>: x = -8 + 6
- Add: x = -2
Answer:
1Step-by-step explanation: