360=x+x+(2x+3)+(2x+3)
we have 360=2x+2x+2x+6
360-6=6x
354=6x
x=354/6=59
x=59
Answer:
aNd?
tHeREs mORe..
Step-by-step explanation:
Answer:
Axis of symmetry= 3
Step-by-step explanation:
f(x)= 2x^2 +12x-4
f(x)=ax^2+bx+c
x=12/2(2)
x=3
f(x)= 2(3)^2+12(3)-14
f(x)= 2(9)+36-14
f(x)=18+36-14
f(x)= 54-14
y=40
2÷3 3 goes into 2 0 times so add 0 to make 20 3goes into 20 6 time so the answer is 0.6666666
Answer:
91.02% probability of selling more than 4 properties in one week.
Step-by-step explanation:
For each property, there are only two possible outcomes. Either it is sold, or it is not. The chance of selling any one property is independent of selling another property. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
![P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20C_%7Bn%2Cx%7D.p%5E%7Bx%7D.%281-p%29%5E%7Bn-x%7D)
In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.
![C_{n,x} = \frac{n!}{x!(n-x)!}](https://tex.z-dn.net/?f=C_%7Bn%2Cx%7D%20%3D%20%5Cfrac%7Bn%21%7D%7Bx%21%28n-x%29%21%7D)
And p is the probability of X happening.
In this problem we have that:
![n = 14, p = 0.5](https://tex.z-dn.net/?f=n%20%3D%2014%2C%20p%20%3D%200.5)
Compute the probability of selling more than 4 properties in one week.
Either you sell 4 or less properties in one week, or you sell more. The sum of the probabilities of these events is decimal 1. So
![P(X \leq 4) + P(X > 4) = 1](https://tex.z-dn.net/?f=P%28X%20%5Cleq%204%29%20%20%2B%20P%28X%20%3E%204%29%20%3D%201)
We want to find
. So
![P(X > 4) = 1 - P(X \leq 4)](https://tex.z-dn.net/?f=P%28X%20%3E%204%29%20%3D%201%20-%20P%28X%20%5Cleq%204%29)
In which
![P(X \leq 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)](https://tex.z-dn.net/?f=P%28X%20%5Cleq%204%29%20%3D%20P%28X%20%3D%200%29%20%2B%20P%28X%20%3D%201%29%20%2B%20P%28X%20%3D%202%29%20%2B%20P%28X%20%3D%203%29%20%2B%20P%28X%20%3D%204%29)
So
![P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20C_%7Bn%2Cx%7D.p%5E%7Bx%7D.%281-p%29%5E%7Bn-x%7D)
![P(X = 0) = C_{14,0}.(0.5)^{0}.(0.5)^{14} = 0.000061](https://tex.z-dn.net/?f=P%28X%20%3D%200%29%20%3D%20C_%7B14%2C0%7D.%280.5%29%5E%7B0%7D.%280.5%29%5E%7B14%7D%20%3D%200.000061)
![P(X = 1) = C_{14,1}.(0.5)^{1}.(0.5)^{13} = 0.000854](https://tex.z-dn.net/?f=P%28X%20%3D%201%29%20%3D%20C_%7B14%2C1%7D.%280.5%29%5E%7B1%7D.%280.5%29%5E%7B13%7D%20%3D%200.000854)
![P(X = 2) = C_{14,2}.(0.5)^{2}.(0.5)^{12} = 0.0056](https://tex.z-dn.net/?f=P%28X%20%3D%202%29%20%3D%20C_%7B14%2C2%7D.%280.5%29%5E%7B2%7D.%280.5%29%5E%7B12%7D%20%3D%200.0056)
![P(X = 3) = C_{14,3}.(0.5)^{3}.(0.5)^{11} = 0.0222](https://tex.z-dn.net/?f=P%28X%20%3D%203%29%20%3D%20C_%7B14%2C3%7D.%280.5%29%5E%7B3%7D.%280.5%29%5E%7B11%7D%20%3D%200.0222)
![P(X = 4) = C_{14,4}.(0.5)^{4}.(0.5)^{10} = 0.0611](https://tex.z-dn.net/?f=P%28X%20%3D%204%29%20%3D%20C_%7B14%2C4%7D.%280.5%29%5E%7B4%7D.%280.5%29%5E%7B10%7D%20%3D%200.0611)
So
![P(X \leq 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 0.000061 + 0.000854 + 0.0056 + 0.0222 + 0.0611 = 0.0898](https://tex.z-dn.net/?f=P%28X%20%5Cleq%204%29%20%3D%20P%28X%20%3D%200%29%20%2B%20P%28X%20%3D%201%29%20%2B%20P%28X%20%3D%202%29%20%2B%20P%28X%20%3D%203%29%20%2B%20P%28X%20%3D%204%29%20%3D%200.000061%20%2B%200.000854%20%2B%200.0056%20%2B%200.0222%20%2B%200.0611%20%3D%200.0898)
Finally
![P(X > 4) = 1 - P(X \leq 4) = 1 - 0.0898 = 0.9102](https://tex.z-dn.net/?f=P%28X%20%3E%204%29%20%3D%201%20-%20P%28X%20%5Cleq%204%29%20%3D%201%20-%200.0898%20%3D%200.9102)
91.02% probability of selling more than 4 properties in one week.