You can't answer this question because you aren't giving the specific type of seismic waves. There is an s-wave a p-wave and an l-wave. Those are the basic waves. An S-wave cannot travel through a liquid at all. So, obviously it travels slower than any other seismic wave.
<span>It would travel faster because their speed depends on the density and composition of material that they pass through.</span>
Answer:
The sun.
Explanation:
The sun provides energy for living organisms, and it drives our planet’s weather and climate patterns.
Remember, Earth is spherical and the energy from the sun does not reach all areas with equal intensity. Areas exposed to the sun are directly on the sun’s rays (i.e. those nearest to the equator) and hence, receive greater solar input. In contrast, those in higher latitudes receive sunlight that is spread over a larger area and that has taken a longer path through the atmosphere. As a result, these higher latitudes receive less solar energy.
Also, ocean circulation and precipitation are all factors of weather
Angular momemtum : mass * tangential speed * distance to the center = 50*2.1*3.6=37800 J.s
The earth's liquid outer core is the major cause of the earth’s magnetic field.
<h3>
What is magnetic field?</h3>
The magnetic influence on moving electric charges, electric currents, and magnetic materials is described by a magnetic field, a vector field. A force acting on a charge while it travels through a magnetic field is perpendicular to both the charge's motion and the magnetic field. The magnetic field of a permanent magnet attracts or repels other magnets as well as ferromagnetic elements like iron. A magnetic field that varies with location will also exert a force on a variety of non-magnetic materials by changing the velocity of those particles' outer electrons. Electric currents, like those utilised in electromagnets, and electric fields that change over time produce magnetic fields that surround magnetised things.
To learn more about magnetic field,visit:
brainly.com/question/11514007
#SPJ4