Answer:
when the ball is at rest in his coach's hands.
Explanation:
The forces on the basketball are balanced when the basketball is not experiencing any acceleration. This happens when the ball is in his coach's hand: in fact, at that moment the ball is at rest, so it means that its acceleration is zero. According to Newton's second law, this also mean that the net force on the basketball is zero, so the forces on the ball are balanced:

where F is the net force, m is the mass of the ball and a is the acceleration.
Answer:
a)Current will flow perpendicularly.
b)Magnitude of flux will be 2.987 N m2 C−1
When gas hydrates are brought to the surface, they evaporate quickly. This would be the biggest, current disadvantage to using gas hydrates as a form of energy.
The height, h to which the package of mass m bounces to depends on its initial velocity, v and the acceleration due to gravity, g and is given below:

<h3>What are perfectly elastic collision?</h3>
Perfectly elastic collisions are collisions in which the momentum as well as the energy of the colliding bodies is conserved.
In perfectly elastic collisions, the sum of momentum before collision is equal to the momentum after collision.
Also, the sum of kinetic energy before collision is equal to the sum of kinetic energy after collision.
Since some of the Kinetic energy is converted to potential energy of the body;


Therefore, the height to which the package m bounces to depends on its initial velocity and the acceleration due to gravity.
Learn more about elastic collisions at: brainly.com/question/7694106