Answer:
Explanation:
A ) Distance between two adjacent anti-node will be equal to distance between two adjacent nodes . So the required distance is 15 cm .
B ) wave-length, amplitude, and speed of the two traveling waves that form this pattern are as follows
wave length = same as wave length of wave pattern formed. so it is 30 cm
amplitude = 1/2 the amplitude of wave pattern formed so it is .850 / 2 = .425 cm
Speed = frequency x wavelength ( frequency = 1 / time period )
= 1 / .075) x 30 cm
400 cm / m
C ) maximum speed
= ω A
= (2π / T) x A
= 2 X 3.14 x .85 / .075 cm / s
= 71.17 cm / s
minimum speed is zero.
D ) The shortest distance along the string between a node and an antinode
= Wavelength / 4
= 30 / 4
= 7.5 cm
Answer:
The answer is C "think about the problem first, systematically consider all factors, and form a hypothesis"
Explanation:
In physics there is some basic fomula that sir Isacc Newton proposed under the topic of motion. The three formulas are below;
<em>1) v=u+at</em>
<em>2)v^2=u^2+2as</em>
<em>3)s=ut+(1/2)(at^2)</em>
the variables are explained below;
u= initial velocity of the body
a=acceleration/Speed of the body
t= time taken by the body while travelling
s= displacement of the body.
Therefore to solve keatons problem, the factors(variables) in the formulas above need to be systematically considered. Since the ball was dropped from the top of the building, the initial velocity is 0 because the body was at rest. Also the acceleration will be acceleration due to gravity (9.8m/s^2)
Heat can be transferred from one place to another by three methods:
conduction in solids,
convection of fluids (liquids or gases),
radiation through anything that will allow radiation to pass.
Answer:
The speed of Susan is 2.37 m/s
Explanation:
To visualize better this problem, we need to draw a free body diagram.
the work is defined as:

here we have the work done by Paul and the friction force, so:


Now the change of energy is:
