Answer:
26.82m/s
Explanation:
Given
Mass = m= 0.4kg
Initial Velocity = u = 0
Charge = 4.0E-5C
Distance= d = 0.5m
Object Charge = 2E-4C
First, we'll calculate the initial energy (E)
E = Potential Energy
PE = kQq / d
Where k = coulomb constant = 8.99E9Nm²/C²
Energy is then calculated by;
PE = 8.99E9 * 4E-5 * 2E-4 / 0.5
PE = 143.84J
Energy = Potential Energy = Kinetic Energy
K.E = ½mv² = 143.84J
½mv² = ½ * 0.40 * v² = 143.85
0.2v² = 143.85
v² = 143.85/0.2
v² = 719.25
v = √719.25
v = 26.81883666380777
v = 26.82m/s
Hence, the object is 26.82m/s fast when the cart moving is very far (infinity) from the fixed charge
Answer: 2.4×10^-3 v/m
Explanation: distance between plates of capacitor (d) =5.0×10^-3m
Potential difference between plates (v) = 12v
Force on electronic charge (f) = 3.8×10^-16 N
Strength of electric field (E) =?
The formulae that relates potential difference, eoectiic field strength and distance between plates is given as
v = Ed
By substituting the parameters, we have that
12 = E × 5.0×10^-3
E = 12/ 5.0 × 10^-3
E = 2.4×10^-3 v/m
The car's speed was zero at the beginning of the 12 seconds,
and 18 m/s at the end of it. Since the acceleration was 'uniform'
during that time, the car's average speed was (1/2)(0 + 18) = 9 m/s.
12 seconds at an average speed of 9 m/s ==> (12 x 9) = 108 meters .
==========================================
That's the way I like to brain it out. If you prefer to use the formula,
the first problem you run into is: You need to remember the formula !
The formula is D = 1/2 a T²
Distance = (1/2 acceleration) x (time in seconds)²
Acceleration = (change in speed) / (time for the change)
= (18 m/s) / (12 sec)
= 1.5 m/s² .
Distance = (1/2 x 1.5 m/s²) x (12 sec)²
= (0.75 m/s²) x (144 sec²) = 108 meters .
The temperature scale which starts at absolute zero is the Kelvin scale. The correct option in respect to the given question is the last option. William Thompson was the British scientist and inventor that invented the Kelvin scale. William Thompson was also popularly known as Lord Kelvin.His discovery of the Kelvin scale is considered one among the three best scales in use for measuring temperatures.Each measuring unit of this scale is never called a degree but a Kelvin. This specialized scale gives the option of measuring temperature in both centigrade and Fahrenheit.
Answer:
net force is positive downward..B