1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yuradex [85]
2 years ago
7

How much work is done lifting a 5 kg ball from a height of 2 m to a height of 6 m? (Use 10 m/s2 for the acceleration of gravity.

)
A) 100 J B) 200 J C) 300 J D) 400 J
Physics
1 answer:
alisha [4.7K]2 years ago
4 0

Answer:

B) 200 [J]

Explanation:

In order to solve this problem we must remember the definition of work which tells us that it is equal to the product of force by a distance, in this case, the force is the weight of the ball. The distance traveled is 4 [m] since 6-2 = 4[m]

F = m*g

where:

m = mass = 5 [kg]

g = gravity acceleration = 10 [m/s^2]

F = 5*10 = 50 [N]

w = F*d

where:

F = force = 50 [N]

d = 4 [m]

w = 50*4 = 200 [J]

You might be interested in
A car is moving at 76 miles per hour. the kinetic energy of that car is 5 × 105 j. how much energy does the same car have when i
valentina_108 [34]
Its would be 144. cause if u think about it
3 0
3 years ago
In a playground, there is a small merry-go-round of radius 1.20 m and mass 160 kg. Its radius of gyration is 91.0 cm. (Radius of
aksik [14]

Answer:

a) 145.6kgm^2

b) 158.4kg-m^2/s

c) 0.76rads/s

Explanation:

Complete qestion: a) the rotational inertia of the merry-go-round about its axis of rotation 

(b) the magnitude of the angular momentum of the child, while running, about the axis of rotation of the merry-go-round and

(c) the angular speed of the merry-go-round and child after the child has jumped on.

a) From I = MK^2

I = (160Kg)(0.91m)^2

I = 145.6kgm^2

b) The magnitude of the angular momentum is given by:

L= r × p The raduis and momentum are perpendicular.

L = r × mc

L = (1.20m)(44.0kg)(3.0m/s)

L = 158.4kg-m^2/s

c) The total moment of inertia comprises of the merry- go - round and the child. the angular speed is given by:

L = Iw

158.4kgm^2/s = [145kgm^2 + ( 44.0kg)(1.20)^2]

w = 158.6/208.96

w = 0.76rad/s

7 0
2 years ago
Which type of physical activity is being performed in the picture?
mafiozo [28]
B strength training I think that’s the answer
3 0
2 years ago
Read 2 more answers
When popcorn is heated over a flame, the kernel burst open. why does this occur?
Bezzdna [24]
<span>If you faced the situation when  popcorn is heated over a flame and the kernel burst opened the thing which caused that is definitely : the air and water vapor which remain in the kernell have expanded.
Hope that helps.

</span>
4 0
2 years ago
A baseball, which has a mass of 0.685 kg., is moving with a velocity of 38.0 m/s when it contacts the baseball bat duringwhich t
Evgen [1.6K]

Answers:

a) 65.075 kgm/s

b) 10.526 s

c) 61.82 N

Explanation:

<h3>a) Impulse delivered to the ball</h3>

According to the Impulse-Momentum theorem we have the following:

I=\Delta p=p_{2}-p_{1} (1)

Where:

I is the impulse

\Delta p is the change in momentum

p_{2}=mV_{2} is the final momentum of the ball with mass m=0.685 kg and final velocity (to the right) V_{2}=57 m/s

p_{1}=mV_{1} is the initial momentum of the ball with initial velocity (to the left) V_{1}=-38 m/s

So:

I=\Delta p=mV_{2}-mV_{1} (2)

I=\Delta p=m(V_{2}-V_{1}) (3)

I=\Delta p=0.685 kg (57 m/s-(-38 m/s)) (4)

I=\Delta p=65.075 kg m/s (5)

<h3>b) Time </h3>

This time can be calculated by the following equations, taking into account the ball undergoes a maximum compression of approximately 1.0 cm=0.01 m:

V_{2}=V_{1}+at (6)

V_{2}^{2}=V_{1}^{2}+2ad (7)

Where:

a is the acceleration

d=0.01 m is the length the ball was compressed

t is the time

Finding a from (7):

a=\frac{V_{2}^{2}-V_{1}^{2}}{2d} (8)

a=\frac{(57 m/s)^{2}-(-38 m/s)^{2}}{2(0.01 m)} (9)

a=90.25 m/s^{2} (10)

Substituting (10) in (6):

57 m/s=-38 m/s+(90.25 m/s^{2})t (11)

Finding t:

t=1.052 s (12)

<h3>c) Force applied to the ball by the bat </h3>

According to Newton's second law of motion, the force F is proportional to the variation of momentum  \Delta p in time  \Delta t:

F=\frac{\Delta p}{\Delta t} (13)

F=\frac{65.075 kgm/s}{1.052 s} (14)

Finally:

F=61.82 N

6 0
3 years ago
Read 2 more answers
Other questions:
  • How much force can a 2.5 kg sledge hammer excerpt on a nail if you can swing the hammer at 20 m/s and the hammer contacts the na
    5·1 answer
  • On a cross-country trip, a couple drives 500 mi in 10 h on the first day, 380 mi in 8.0 h on the second day, and 600 mi in 15 h
    14·1 answer
  • The force of gravity is responsible for continuously changing the ______ of a satellite.
    7·2 answers
  • If you fire a gun horizontally, and at the same time drop a bullet/slug from the same height, what will happen?
    13·1 answer
  • Problem #3: 3.6. A diode has wdo = 0.4 µm and φj = 0.85 V. (a) What reverse bias is required to triple the depletion-layer width
    5·1 answer
  • Sketch the electric field around these two objects if they have the same sign of charge. Make a separate drawing showing equipot
    11·1 answer
  • A Boeing 787 is initially moving down the runway at 6.0 m/s preparing for takeoff. The pilot pulls on the throttle so that the e
    13·1 answer
  • HELP PLEASEE ILL GIVE BRAINLIEST
    6·1 answer
  • A man weighing 490 N on earth weighs only 81.7 N on the moon. His mass on the moon is ____ kg. (Use g=9.8 m/s²)
    15·1 answer
  • A blue train of mass 50 kg moves at 4 m/s toward a green train of 30 kg initially at rest. What is the initial momentum of the b
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!