Considering the least common factor of 15 and 18, it is found that they will depart from the central station at the same time at 11 AM.
<h3>How to find the time it takes for periodic events to repeat at the same time?</h3>
To find the time that passes between the events happening at the same time, we need to find the least common multiple of the periods.
In this problem, the periods are of 15 and 18, hence their lcm is found as follows:
15 - 18|2
15 - 9|3
5 - 3|3
5 - 1|5
1 - 1
Hence:
lcm(15,18) = 2 x 3 x 3 x 5 = 90 minutes.
They will depart from the central station at the same time in 90 minutes from 9:30 AM, hence at 11 AM.
More can be learned about the least common factor at brainly.com/question/16314496
#SPJ1
Answer:the answer will be 6/16
Step-by-step explanation:
3/8
Answer:
y" = -24 / y³
Step-by-step explanation:
6x² + y² = 4
Take the derivative of both sides with respect to x.
12x + 2y y' = 0
Again, take the derivative of both sides with respect to x.
12 + 2y y" + y' (2y') = 0
12 + 2y y" + 2(y')² = 0
Solve for y' in the first equation.
2y y' = -12x
y' = -6x/y
Substitute and solve for y":
12 + 2y y" + 2(-6x/y)² = 0
12 + 2y y" + 2(36x²/y²) = 0
12 + 2y y" + 72x²/y² = 0
6y² + y³ y" + 36x² = 0
y³ y" = -36x² − 6y²
y" = (-36x² − 6y²) / y³
Solve for y² in the original equation and substitute:
y² = 4 − 6x²
y" = (-36x² − 6(4 − 6x²)) / y³
y" = (-36x² − 24 + 36x²) / y³
y" = -24 / y³
Answer:
5x4x3=60
Step-by-step explanation:they are because when you simplify they are the same