Answer:
Explanation:
250 cm^3 of 0.2 moldm-3 H2SO4 can be prepared from 150cm^3 of 1.0 moldm^-3 by dilution.
150cm^3 of the 1.0 moldm^-3 stock solution is measured out using a measuring cylinder and transferred into a 250 cm^3 standard volumetric flask and made up to mark. The resulting solution is now 250cm^3 of 0.2 moldm-3 H2SO4.
The answer is 0.405 M/s
- (1/3) d[O2]/dt = 1/2 d[N2]/dt
- d[O2]/dt = 3/2 d[N2]/dt
- d[O2]/dt = 3/2 × 0.27
- d[O2]/dt = 0.405 mol L^(-1) s^(-1)
The electric field, or any field such as magnetic field or gravitational field, is the strongest the closer we get to the source of the field. The concentration of field lines also increases closer to the object; these field lines are seen to be coming out of a positive charge.
Therefore, the strongest electric field is at the point where the concentration of electric field lines is the highest.
We are given the pOH of the solution of 10.75. pOH is the property of the solution that is related to the OH ion concentration of the solution. THe formula to be followed is pOH = -log (OH); OH- = 10^-pOH. In this case, OH- = 10^-10.75 equal to B. 1.778 x 10^-11 M
<u>Lithium Iodide</u><u>:</u>
~formed by the reaction of hydroxide with hydroiodic acid
Hope this helped you, have a good day bro cya)