Mass = 5 g
volume = 20 cm³
density = mass / volume
therefore:
D = m / V
D = 5 / 20
D = 0.25 g/cm³
Answer:
Explanation:
"Three hundred ten million, seven hundred sixty-three thousand, one hundred thirty-six".
A scientist needs to check several parameters before coming
to a conclusion about the amount of water pollution. The scientists needs to
check the amount of dissolved oxygen in the water, temperature of the water,
the clarity of the water, the PH level of the water and also the amount of
bacteria present in the water. There may be other criteria’s, but the mentioned
ones are enough to gauge the amount of pollution in the water. Scientists often
takes fish and aquatic plants from the water to be tested to check the amount
of pollution indirectly affecting these species.
Pure- table salt
Impure- vegetable oil
Answer:
0.007 mol
Explanation:
We can solve this problem using the ideal gas law:
PV = nRT
where P is the total pressure, V is the volume, R the gas constant, T is the temperature and n is the number of moles we are seeking.
Keep in mind that when we collect a gas over water we have to correct for the vapor pressure of water at the temperature in the experiment.
Ptotal = PH₂O + PO₂ ⇒ PO₂ = Ptotal - PH₂O
Since R constant has unit of Latm/Kmol we have to convert to the proper unit the volume and temperature.
P H₂O = 23.8 mmHg x 1 atm/760 mmHg = 0.031 atm
V = 1750 mL x 1 L/ 1000 mL = 0.175 L
T = (25 + 273) K = 298 K
PO₂ = 1 atm - 0.031 atm = 0.969 atm
n = PV/RT = 0.969 atm x 0.1750 L / (0.08205 Latm/Kmol x 298 K)
n = 0.007 mol