The ball will take 0.45 seconds to reach the ground
<h3>How will we solve this question?</h3>
We will use Newton’s laws of motion, so
H=
taking height= 1m


<h3>What are the three laws of motion given by Newton?</h3>
The 3 laws of motion given by Newton are as follows:
1) Unless an unbalanced force acts upon it, an item at rest remains at rest, and an object in motion continues to move in a straight line at a constant pace.
2) An object's acceleration is influenced by its mass and the force being applied.
3) Whenever one thing applies force to another, the second object applies the opposing, equal force to the first.
To know more about Newton's laws of motion visit:
brainly.com/question/27915475
#SPJ4
Answer:
A. α = 94.4 rad/s
B. a = 28.32 m/s
C. N = 34N
D. α = 94.4 rad/s
a = 28.32 m/s
N = 44.4 N
Explanation:
part A:
using:
∑T = Iα
where T is the torque, I is the moment of inertia and α is the angular momentum.
firt we will find the moment of inertia I as:
I = 
Where M is the mass and R is the radius of the wheel, then:
I = 
I = 0.36 kg*m^2
Replacing on the initial equation and solving for α, we get::
∑T = Iα
Fr = Iα
34 N = 0.36α
α = 94.4 rad/s
part B
we need to use this equation :
a = αr
where a is the aceleration of the cord that has already been pulled off and r is the radius of the wheel, so replacing values, we get:
a = (94.4)(0.3 m)
a = 28.32 m/s
part C
Using the laws of newton, we know that:
N = T
where N is the force that the axle exerts on the wheel part and T is the tension of the cord
so:
N = 34N
part D
The anly answer that change is the answer of the part D, so, aplying laws of newton, it would be:
-Mg + N +T = 0
Then, solving for N, we get:
N = -T+Mg
N = -34 + (8 kg)(9.8)
N = 44.4 N
Answer:
a

b
Explanation:
From the question we are told that
The distance of separation is 
The is distance of the screen from the slit is 
The distance between the central bright fringe and either of the adjacent bright 
Generally the condition for constructive interference is

From the question we are told that small-angle approximation is valid here.
So 
=> 
=> 
Here n is the order of maxima and the value is n = 1 because we are considering the central bright fringe and either of the adjacent bright fringes
Generally the distance between the central bright fringe and either of the adjacent bright is mathematically represented as

From the question we are told that small-angle approximation is valid here.
So

=> 
So


substituting values



In the b part of the question we are considering the next set of bright fringe so n= 2
Hence

Bro I really think it might be c