Answer:
0.02896 kg/s
Explanation:
= Initial displacement = 0.5 m
= Final displacement = 0.1 m
t = Time taken = 0.5 s
m = Mass of object = 45 g
Displacement is given by

At maximum displacement


The magnitude of the damping coefficient is 0.02896 kg/s
Answer:
<em>1,378.9ms²</em>
Explanation:
Given the following
Distance S = 70.6m
Time t = 0.32secs
Initial velocity = 0m/s
Required
Acceleration
Using the equation of motion
S = ut+1/2at²
Substitute
70.6 = 0+1/2a(0.32)²
70.6 = 0.0512a
a = 70.6/0.0512
a = 1,378.9
<em>Hence the acceleration is 1,378.9ms²</em>
Answer: 9.9%
Explanation: efficiency = (work output /work input) × 100
Note that, 1 kilocalorie = 4184 joules, hence 22kcal = 22× 4184 = 92048 joules.
Work output = 9200 j and work input = 92048 j
Efficiency = (9200/92048) × 100 = 0.099 × 100 = 9.9%
I'm pretty sure the energy an object acquires when exposed to a force is known was potential energy.
Answer:
22.11 m / s
Explanation:
The falcon catches the prey from behind means both are flying in the same direction ( suppose towards the left )
initial velocity of falcon = 28 cos 35 i - 28 sin 35 j
( falcon was flying in south east direction making 35 degree from the east )
momentum = .9 ( 28 cos 35 i - 28 sin 35 j )
= 20.64 i - 14.45 j
initial velocity of pigeon
= 7 i
initial momentum = .325 x 7i
= 2.275 i
If final velocity of composite mass of falcon and pigeon be V
Applying law of conservation of momentum
( .9 + .325) V = 20.64 i - 14.45 j +2.275 i
V = ( 22.915 i - 14.45 j ) / 1.225
= 18.70 i - 11.8 j
magnitude of V
= √ [ (18.7 )² + ( 11.8 )²]
= 22.11 m / s